
Invoking and Linking Generators from Multiple Hardware
Languages using CoreIR

Ross Daly
Stanford

rdaly525@stanford.edu

Lenny Truong
Stanford

lenny@stanford.edu

Pat Hanrahan
Stanford

hanrahan@cs.stanford.edu

ABSTRACT
In this paper, we advocate that the EDA community should
invest in infrastructure that supports language interoper-
ability and linking, which in turn will promote language
diversity, a successful concept in the software world. We
begin by observing how the software community has devel-
oped standards and infrastructure to support programming
language interoperability, followed by discussion of how
these techniques can be applied to hardware languages.
In particular, this paper proposes applying the concept of
software linking to the domain of hardware design. A key
issue arises when considering the use of circuit generators,
programs that consume parameters and produce hardware
circuits. Circuit generators rely on the integration of a pro-
gramming language and a hardware language, which com-
plicates the notion linking. To address this, we propose the
concept of the Foreign Generator Interface (FGI), an adapta-
tion of the of the Foreign Function Interface from software,
which enables the construction of hardware designs that
use generators from multiple languages. Then, we show
how FGI can be used to implement Staged Generator Com-
pilation (SGC), which is a linking-based hardware compila-
tion process inspired by multi-stage programming. Finally,
we present CoreIR, a hardware intermediate representa-
tion and compiler framework that provides the requisite
infrastructure for implementing FGI and SGC.

1 INTRODUCTION: THE FUTURE OF
HARDWARE DESIGN

The open-source movement has fostered the collaboration
of industry, academia, and hobbyists in developing a diverse
set of tools for building software. Considering the success
of the open-source model, the researchers and engineers
responsible for developing the next generation of EDA tools
should commit to the same principles of open collaboration
and look to what allowed open collaboration to thrive in the
software community

One fundamental component of open collaboration is in-
teroperability, a system design requirement that defines a
mechanism with which software tools can interact. When
two software systems can interoperate, this results in the
merging of two communities of developers and users, who
now mutually benefit from the improvements of either sys-
tem. Another fundamental component is flexible compilation
flows like staged compilation. In this paper, we examine the

current status of interoperability of hardware languages
and propose the requirements of a system that would help
move the community towards more language and library
diversity. Then, we introduce CoreIR, an open-source in-
termediate representation and compiler framework that is
designed specifically to meet these requirements.

1.1 Vision for the future
The future of open-source EDA tools should include a di-
verse landscape of language and libraries. This claim is
motivated by the success of language diversity in the open-
source software community. Software developers are af-
forded the luxury of choosing the right language for the
task at hand, and can compose multiple languages into a sin-
gle application to balance productivity and performance. In
contrast, hardware projects are limited in language choices.

In order to define a path towards a future of hardware
language diversity, we observe three ways in which the
software community has promoted diversity through lan-
guage interoperability. First, software languages provide
foreign function interfaces, which enable programs to trans-
fer control between program fragments written in different
languages. Next, data exchange formats such as JSON pro-
vide a means for programs written in different languages
to communicate data. Finally, the design of modern soft-
ware compilers, intermediate representations, and build
systems have been optimized to support staged compilation
which allows the assembly of program fragments written in
multiple languages through a process called linking.

2 BACKGROUND

2.1 Hardware Generators
A hardware generator is a program that consumes parame-
ters and produces a hardware circuit. Verilog has primitive
generator capabilities in the form of parameterized modules,
which can be used to parameterize port widths and make
simple instancing decisions using the generate statement.
However, using parameters to describe optional ports and
more complicated instancing and wiring patterns cannot be
done. Newer systems overcome these limitations by using
more expressive hardware generators for both the circuit
interface and the circuit structure. Genesis2 [8] presented
the concept of a chip generator, which uses Perl-based
template metaprogramming to construct Verilog strings.
Genesis2 enabled more sophisticated parametrization not

found in Verilog and VHDL, such as the optional ports de-
scribed earlier. Chisel [1] built on this work by embedding a
hardware construction language into a general purpose pro-
gramming language. This approach enabled generator im-
plementations to leverage a larger set of metaprogramming
capabilities beyond text-based templating. Furthermore,
the embedding approach enabled designers to incorporate
programming language concepts such as objected orienta-
tion, functional programming, and parameterized types into
their hardware generators.

2.2 Hardware Language Interoperability
Currently there exists poor support for interoperability in
the hardware language ecosystem. Verilog allows the in-
stantiation of VHDL modules, and vice versa, but compiler
support is limited. Since Verilog is the standard input to
most EDA tools, the current practical mechanism for us-
ing non-Verilog languages is to maintain complex, brittle,
project-dependent scripts that generate and combine Ver-
ilog files. This is further complicated when trying to swap
different implementations of complex generators like mem-
ories. IP-XACT [2] is an XML schema for specifying informa-
tion about reusable circuit components such as file lists, top
level ports, protocols, and parameters. This is a good step
towards general interoperability, but still requires complex
per-project scripts to utilize circuits.

2.3 Software Language Interoperability
In software, language interoperability is treated as a first
class citizen. Developers have access to tools and tech-
niques that enable them to compose multiple languages
together to construct a single application. One can use a
high level language like Python to perform simple glue op-
erations such as processing web requests, composed with
a library written in low level languages optimized for per-
formance. The technologies underlying tooling support for
interoperability are data exchange formats, foreign function
interfaces (FFIs), a common intermediate representation,
and linking.

Common data exchange formats such as JSON, XML, or
protobuf specify data serialization schemes that includes
support for useful data structures. The software commu-
nity has collaborated in the development of open-source
libraries and Application Programing Interfaces (APIs) sup-
porting these formats, making them easy to use in many
languages.

A Foreign Function Interface (FFI) is a mechanism for a
programming language like Python to directly call functions
in another language like C. This is typically accomplished
by having the FFI adhere to a specific Application Binary
Interfaces (ABI) which specifies how data and program con-
trol can be transfered. The success of tools like Python’s
numpy [7] is directly enabled by using an FFI to interoper-
ate between C and Python.

module counter(input clk, input en, output [22:0] cnt);

(* mylib *)

Register #(.width(23), .has_en(1)) reg_inst(

.clk(clk),

.in(cnt + 1'b1),

.out(cnt),

.en(en)

);

endmodule

Figure 1: A Verilog counter module that instantiates
the register generator defined in Figure 2. The gen-
erator parameters, width and has_en, are described
using Verilog’s parameter syntax.

In library mylib

def Register(width, has_en):

IO = {}

IO['in'] = In(Bits(width)),

IO['out'] = Out(Bits(width)),

IO['clk'] = In(Bit)

if has_en:

IO["en"] = In(Bit)

return NewModule("Reg", IO)

Figure 2: Python implementation of a hardware gen-
erator that produces a register which is parameter-
ized by width, and has_en a boolean flag indicating
whether to include an enable port.

A common intermediate representation such as LLVM [6]
enables interoperability and reuse by providing a common
compilation target for different programming languages.

In software, linking is essential to supporting modularity.
It enables programs to refer to functions even if the function
implementation is not known during compilation. As a result,
programs can refer to functions from libraries that may have
been written in a different language. To create and run the
final executable, a linker is used to resolve the references,
and is therefore a key component of the software language
interoperability tool chain

3 FOREIGN GENERATOR INTERFACE
In this section, we present the notion of a Foreign Generator
Interface (FGI), a generalization of the foreign function
interface to fit the needs of composing hardware generators
written in multiple languages.

To better understand why we must extend the capabilities
of a foreign function interface, consider the basic example
of designing the Verilog counter in Figure 1. The imple-
mentations refers to the register generator implemented

2

in Python shown in Figure 2. To support this style of multi-
language generator composition, we have identified three
key capabilities required of the generator infrastructure:

(1) The Verilog design needs a syntactic mechanism for
referencing the register generator defined in Python.

(2) The Verilog compiler needs to parse the generator
reference, determine the values of the parameters,
and invoke the generator with the parameters.

(3) The generator needs to return the interface of the
generated circuit to the Verilog compiler so it may be
instanced and wired up as a component of the design.

Abstractly, this imples the generator infrastructure needs
to support the passing of parameters from hardware lan-
guage compilers to generators which could be written in a
different language. It also needs to provide a mechanism
for creating and returning generated circuit interfaces from
the generator to the compiler. And finally there needs to be
conventions for defining the software environment to run
generators. The FGI is a specification for these mechanisms.

An existing data exchange format such as JSON does
provide a mechanism to pass data between two languages.
However, we argue that such a mechanism needs to be
augmented for additional data types commonly used as
hardware parameters such as a fixed width bit vector.

The specification for exchanging circuit interfaces could
be considered analogous to a software Application Binary
Interface (ABI). As such it should be designed to be com-
patible with the circuit type system of a general Hardware
Design Language.

We also observe that the process for compiling the circuit
in Verilog begins with an invocation of a Verilog compiler
which is itself a compiled software binary. This means that:

(a) the compiler binary must be linked at compile time
with the Python library, or

(b) the compiler must use run-time linking to dynamically
load the Python library, or

(c) the compiler must launch a new process, call the
generator via a command-line interface, then parse
the result.

Option (a) requires that the compiler either be distributed
with support for all languages and all libraries of foreign
generators or recompiled for each project which may refer
to a different set of libraries. This is not viable because it
introduces design flow friction by requiring project-specific
custom compilers and difficulty in adding new libraries

Option (b) avoids this issue by extending the compiler to
support the required libraries on demand. However, this
means that any generator must be accessible either through
a dynamic library that a compiler can load at runtime.

Option (c) allows a generic way for generators to be
called, but the compiler needs to know what program to use
to run the generator. This can be alleviated by requiring

generators to conform to a specific command line interface
and common runtime environments.

4 STAGED GENERATOR COMPILATION
One decision regarding foreign generators is whether the
code is invoked immediately upon reference, so that the
generated circuit implementation is available, or if the in-
vocation of the generator is deferred to some later stage.
The simplest approach is to invoke the generator immedi-
ately upon reference, which is similar to calling an imported
function in a Python program. This results in the immediate
execution of code. Alternatively, deferring execution of the
generator, which we refer to as Staged Generator Compila-
tion (SGC), is analogous to the C compilation process where
functions are declared and invoked in a program without
needing the definition. The linker resolves references to
function definitions at a later stage. The SGC pattern en-
ables useful features such as

(1) Complex compilation passes to determine the exact
values of generator parameters needed in a system
like Diplomacy [3]

(2) Incremental recompilation with generators.
(3) Swapping out different implementations of genera-

tors. For example, one could swap out a simulation
model of a memory with a technology-specific memory
implementation

(4) Simplified synthesis utilizing a library of generators
implementing primitives in terms of technology-specific
primitives

One major issue with adapting the linking pattern to
hardware is that circuit interfaces cannot just be declared
like function interfaces. Instead, their interfaces must be
computed based on parameters. This is similar to issues
that would arise when trying to link templated C++ func-
tions. So, to support Staged Generator Compilation, the
infrastructure needs to provide a mechanism for declaring
the interface of a generated circuit without requiring the
implementation of the generator.

Two possible solutions for declaring generated circuits
are:

(1) Declare the expected generated circuit interface in
the host language. Then, at a later stage in compila-
tion, verify that the declaration was correct.

(2) Require the generator to have an additional function
to compute the interface without the circuit imple-
mentation.

Option 2 could be realized by separating the notion of a
generator interface and implementation. This requires that
a generator explicitly implements a particular interface.
We think that both of these options should be possible to
use. Even if a generator library did not implement (2), the
generators could still be used eagerly and without linking
using the FGI.

3

5 COREIR
In this section, we introduce CoreIR [4], a system designed
to support an ecosystem based on Foreign Generator In-
terfaces and Staged Generator Compilation. CoreIR is an
intermediate representation and compiler framework that
facilitates the construction of hardware languages and pro-
motes language interoperability. Heavily inspired by LLVM,
CoreIR is written in C++, and language front-ends can use
the C API to construct, inspect, and manipulate objects in
the CoreIR intermediate representation. CoreIR provides
a rich, clear, and simple set of IR nodes and connection
semantics, a set of common hardware optimization passes,
and different compilation targets; similar to Yosys [9], and
FIRRTL [5]. In addition, for interoperability, CoreIR pro-
vides the following key services to the hardware language
community:

(1) A common target for the development of language
and DSL front-ends which results in the reuse of com-
piler internals such as optimizations and technology
mapping.

(2) A common API for implementing Foreign Generator
Interfaces in the host language of an embedded hard-
ware language, along with a parameter passing spec.

(3) A simple, but expressive interface type system which
serves as a wiring ABI.

(4) APIs for loading libraries and running generators.

To implement FGI, CoreIR defines the set high level pa-
rameter types listed below. Each of these types are accom-
panied by a standard JSON serialization scheme.

ParamType = Bool

| Int

| BitVector(N)

| String

| Json

These parameter types were chosen to cover a large
variety of parameters seen in hardware languages, along
with providing a mechanism for exchanging arbitrary data
using the Json type.

The CoreIR type system is designed to provide enough
expressibility to declare the interfaces of general circuits,
while maintaining a simplicity and preciseness that serves
as the foundation for composing circuits defined in different
hardware languages. In order to promote diversity in front-
end languages with different type systems, the CoreIR type
system must be defined in a manner that many type systems
can map to.

Type = BitIn | BitOut | BitInOut

| Array(N, Type)

| Record((string, Type)∗)

The type system provides the following connection seman-
tics: TypeA can only be connected to TypeB if and only if the
recursive type structure is identical and all the leaf types

are duals. BitIn is the dual of BitOut and BitInOut is the
dual of itself. This type system is a superset of Verilog and
VHDL, and is similar to that of Chisel.

To enable SGC, CoreIR has a first-class notion of cir-
cuit generators and interface generators within the IR. Cir-
cuit definitions can contain instances of generated modules
whose generated code need not have been run. CoreIR also
provides an API for loading, resolving, and calling gener-
ators from external libraries which allows for the user or
compiler to make the decision about when to run genera-
tors.

6 PRELIMINARY RESULTS
This section details an experiment that demonstrates how
CoreIR can be used to implement a circuit design that uses
foreign generators. The experiment uses Verilog as a host
language and Python as a foreign language which shows
how the generated circuit can be instanced and wired like
a normal Verilog module. The code for this experiment has
been released [4] and is available for use under a permissive
open-source license.

First, the Python generator was wrapped in a FGI-compliant
dynamic library, and installed on the system. The Yosys Ver-
ilog compiler [10] was extended to support referencing
foreign generators using Verilog’s annotation syntax shown
in 1. The compiler loads and calls the foreign generator
using the CoreIR API, creates the instance using the inter-
face returned by the Python generator, and then compiles
to CoreIR. Finally, at a later stage, the generator is run and
linked into the final design.

The CoreIR FGI abstraction allows the details of how
to run the generator to be isolated into the creation and
installation of the dynamic library rather than mixed in
with the details of the host language. Easily wrapping, and
installing existing and new generators as dynamic libraries
is future work for a hardware library installation tool.

7 CONCLUSION
In this paper, we presented a case for hardware language
interoperability and hardware linking motivated by the suc-
cess of language interoperability in software. We discussed
the requirements for a system that enables hardware lan-
guage interoperability, which focused on the ability to com-
pose and link hardware generators. Then we presented
CoreIR, a system that attempts to meet these requirements,
alongside an experiment showing a circuit design using
a foreign generator. We hope that the ideas presented in
this paper enable a more open source future for hardware
design.

REFERENCES
[1] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Wa-

terman, Rimas Avižienis, John Wawrzynek, and Krste Asanović. 2012.

4

Chisel: constructing hardware in a scala embedded language. In De-
sign Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE. IEEE,
1212–1221.

[2] Victor Berman. 2006. Standards: the P1685 IP-XACT IP metadata
standard. IEEE Design & Test of Computers 23, 4 (2006), 316–317.

[3] Henry Cook, Wesley Terpstra, and Yunsup Lee. 2017. Diplomatic De-
sign Patterns: A TileLink Case Study. In First Workshop on Computer
Architecture Research with RISC-V (CARRV’17).

[4] Ross Daly. 2017. CoreIR. http://coreir.org
[5] Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang,

Albert Magyar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim Law-
son, et al. 2017. Reusability is FIRRTL ground: Hardware construction
languages, compiler frameworks, and transformations. In Proceedings
of the 36th International Conference on Computer-Aided Design. IEEE
Press, 209–216.

[6] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In Proceedings
of the international symposium on Code generation and optimization:
feedback-directed and runtime optimization. IEEE Computer Society,
75.

[7] Travis E Oliphant. 2006. A guide to NumPy. Vol. 1. Trelgol Publishing
USA.

[8] Ofer Shacham. 2011. Chip multiprocessor generator: automatic gen-
eration of custom and heterogeneous compute platforms. Stanford
University.

[9] Clifford Wolf. 2016. Yosys open synthesis suite.
[10] Clifford Wolf, Johann Glaser, and Johannes Kepler. 2013. Yosys-a free

Verilog synthesis suite. In Proceedings of the 21st Austrian Workshop
on Microelectronics (Austrochip).

5

http://coreir.org

	Abstract
	1 Introduction: The Future of Hardware Design
	1.1 Vision for the future

	2 Background
	2.1 Hardware Generators
	2.2 Hardware Language Interoperability
	2.3 Software Language Interoperability

	3 Foreign Generator Interface
	4 Staged Generator Compilation
	5 CoreIR
	6 Preliminary Results
	7 Conclusion
	References

