
An Open-Source Python-Based Hardware
Generation, Simulation, and Verification Framework

Shunning Jiang Christopher Torng Christopher Batten
School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

{ sj634, clt67, cbatten }@cornell.edu

ABSTRACT
We present an overview of previously published features and work
in progress for PyMTL, an open-source Python-based hardware
generation, simulation, and verification framework that brings com-
pelling productivity benefits to hardware design and verification.
PyMTL provides a natural environment for multi-level modeling
using method-based interfaces, features highly parametrized static
elaboration and analysis/transform passes, supports fast simulation
and property-based random testing in pure Python environment,
and includes seamless SystemVerilog integration.

1 INTRODUCTION
There have been multiple generations of open-source hardware
generation frameworks that attempt to mitigate the increasing
hardware design and verification complexity. These frameworks
use a high-level general-purpose programming language to ex-
press a hardware-oriented declarative or procedural description
and explicitly generate a low-level HDL implementation. Our pre-
vious work [17] has classified these framework into three major
categories. Hardware preprocessing frameworks (HPFs) intermin-
gle a high-level language for macro-processing and a low-level
HDL for logic modeling. HPFs enable more powerful parametriza-
tion but create an abrupt semantic gap in the hardware descrip-
tion [16, 25]. Hardware generation frameworks (HGFs) completely
embed parametrization and behavioral modeling in a unified high-
level “host” language [4, 5, 8, 19, 21], but still generate a low-level
HDL implementation for simulation. This limits the use of available
host-language features, requires test benches be written in the low-
level HDL, and creates a modeling/simulation language gap that
may require the designer to frequently cross language boundaries
during iterative development. All these challenges have inspired
completely unified hardware generation and simulation frameworks
(HGSFs) where parametrization, static elaboration, test benches,
behavioral modeling, and a simulation engine are all embedded in
a general-purpose high-level language [3, 6, 12, 14, 15, 22].

Our previous work on PyMTL [17, 20] demonstrated the po-
tential for a Python-based HGSF to improve the productivity of
hardware development. The Python language provides a flexible
dynamic type system, object-oriented programming paradigms,
powerful reflection and introspection, lightweight syntax, and rich
standard libraries. HGSFs that are built upon these productivity fea-
tures enable a designer to write more succinct descriptions, to avoid
crossing any language boundaries for development, testing, and
evaluation, and to use the complete expressive power of the host lan-
guage for verification, debugging, instrumentation, and profiling. A
typical workflow using PyMTL is shown in Figure 1. The designer
starts from developing a functional-level (FL) design-under-test
(DUT) and test bench (TB) completely in Python. Then the DUT
is iteratively refined to the cycle level (CL) and register-transfer

Verilog
 DUT'

Sim

 HDL
(Verilog)

FL DUT

Host Language
 (Python)

Test Bench

Sim
 cosim

FPGA/
 ASIC

generate synth

CL DUT
RTL DUT

coverage.pypytest hypothesis

Figure 1: PyMTL’s workflow – The designer iteratively refines
the hardware within the host Python language, with the help from
pytest, coverage.py, and hypothesis. The same test bench is later
reused for co-simulating the generated Verilog. FL = functional
level; CL = cycle level; RTL = register-transfer level; DUT = design
under test; DUT’ = generated DUT; Sim = simulation.

level (RTL), along with verification and evaluation using Python-
based simulation and the same TB. The designer can then translate a
PyMTL RTL model to Verilog and use the same TB for co-simulation.
Note that designers can also co-simulate existing SystemVerilog
source code with a PyMTL test bench. The ability to simulate/co-
simulate the design in the Python runtime environment drastically
reduces the iterative development cycle, eliminates any seman-
tic gap, and makes it feasible to adopt verification methodologies
emerging in the open-source software community [11, 23]. Finally,
the designer can push the translated DUT through an FPGA/ASIC
toolflow. Section 2 gives an overview of key PyMTL features that
enable this productive workflow.

Section 3 discusses a variety of PyMTL use cases in the computer
architecture community. PyMTL has been used by over 400 students
for computer architecture course lab assignments. Multiple research
papers at top conferences have used PyMTL for productive CL and
RTL modeling [9, 10, 18, 26]. PyMTL has also been used in three
chip tapeouts: BRGTC1 [29] in IBM 130 nm, Celerity [1, 13] in
TSMC 16 nm, and BRGTC2 [28] in TSMC 28 nm.

2 OVERVIEW OF PYMTL FEATURES
In this section, we introduce the following key productivity features
of PyMTL: multi-level modeling, method-based interfaces, highly
parametrized static elaboration, analysis and transform passes, pure-
Python simulation, property-based random testing, Python/Sys-
temVerilog integration, and fast simulation speed.

Multi-Level Modeling – PyMTL provides a unified environ-
ment for modeling hardware at the functional level (FL), cycle level
(CL), and register-transfer level (RTL) by providingmechanisms that
ensure compatible communication at cross-level boundaries. This
multi-level modeling approach systematically builds confidence in
verifying a single RTL design-under-test (DUT). The designer is en-
couraged to first create straightforward FL models which can serve

WOSET’18, Nov 8, 2018, San Diego, CA, USA S. Jiang et al.

1 # FL implementation for calculating log2(N)
2 @s.tick_fl
3 def fl_algorithm():
4 # put/get have blocking semantics
5 s.out.put(math.log(s.in.get(), 2))

1 # CL implementation emulates a 3-cycle pipeline
2 s.pipe = Pipeline(latency = 3)
3 @s.tick_cl
4 def cl_algo_pipelined():
5 if s.out_q.enq_ready():
6 if s.pipe.can_pop(): s.out_q.push(s.pipe.do_pop())
7 else: s.pipe.advance()
8
9 if not s.in_q.deq_ready():
10 s.pipe.do_push(math.log(s.in_q.deq(), 2))

1 # Part of RTL implementation
2 s.N = Reg(Bits32)
3 s.res = RegEn(Bits32)
4 s.connect(s.res.out, s.out.msg)
5 ...
6 @s.combinational
7 def rtl_combN():
8 s.res.in_ = s.res.out + 1
9 s.N.in_ = s.N.out >> 1
10 if s.N.out == 0: s.res.en = Bits1(0)
11 else: s.res.en = Bits1(1)

Figure 2: Example of PyMTLMulti-LevelModeling –The log2
function is implemented at different levels. Different decorators are
used to mark FL/CL/RTL blocks.

as golden models for CL/RTL modeling, along with test benches
(TB) which can also be reused for CL/RTL verification/simulation.
The Python language enables rapid algorithmic exploration at the
functional level. Then the designer refines the FL model into CL
model for cycle-approximate design-space exploration. After the
FL and CL models are implemented, verified, and evaluated, the
designer can implement the actual hardware in RTL and reuse the
same test bench that has validated the FL/CLmodels. Figure 2 shows
an example of the same design implemented at different levels.

Seamless multi-level modeling in PyMTL also shines in compos-
ing multiple models at different levels together for faster design-
space exploration. Sometimes the designer might be working under
a tight time constraint, andwants to implement only the performance-
critical DUT in RTL. To reduce the time spent to simulate the very
first composition, the designer can implement critical components
in RTL, and non-critical ones in CL based on rough performance
estimates (such as a cycle-level cache with a single-cycle hit la-
tency). Later, the CL components may be refined to RTL without
any change to other RTL components.

Method-Based Interfaces (Work inProgress) –Method-based
interfaces provide designers greater semantic meaning for inter-
model communication by raising the level of abstraction at the inter-
face. Currently, cross-layer (e.g., CL to FL/RTL) communications are
handled by PyMTL adapters that provide FL/CLwithmethods to call
and RTL with valid/ready handshake signals. However, under the
hood they are all implemented using RTL signals and just wrapped
with methods. These overheads slow down the simulation of FL/CL
models, even though FL/CL models are supposed to be simpler and
simulate faster than RTL. In addition, these adapters must be instan-
tiated and managed manually by the designer, which adds extra
complexity to the design effort. To address these challenges, we
take inspiration from Bluespec’s method-based interfaces [24] and
SystemC’s transaction-level modeling (TLM) [27]. We are working
on true method-based interfaces for FL/CL modeling and automatic
interface coercion between different levels as shown in Figure 3.
When composing two models at the same level, CL and FL inter-
faces can be "connected" by passing a method pointer for FL/CL,
and RTL interfaces are still connected via signals. When compos-
ing two models at different levels, PyMTL automatically inserts an

Xcel FL

A
da

pt
er

R
T

L
 I

nt
er

fa
ce

x = read(0x10)

Xcel CL

A
da

pt
er

R
T

L
 I

nt
er

fa
ce

enqueue(req)

dequeue(resp)

Xcel RTL

R
T

L
 I

nt
er

fa
ce

valid = 1; addr = ...

if valid: x = data

read(0x10)

Mem FLXcel FL

A
da

pt
er

F
L

 I
nt

er
fa

ce

x = read(0x10)

Xcel CL

C
L

 I
nt

er
fa

ce

enqueue(req)

dequeue(resp)

Xcel RTL

R
T

L
 I

nt
er

fa
ce

if ready: en = 1; ...

rdy = 1; if en: ...

Port-Based Method-Based

F
L

 I
nt

er
fa

ce

valid/
ready

valid/
ready

valid/
ready

read()

 en/
ready

read()

A
da

pt
er

enq()
read()

deq() read(0x10)

Mem FL

F
L

 I
nt

er
fa

ce

read(0x10)

Mem FL

F
L

 I
nt

er
fa

ce

Mem FL

A
da

pt
er

R
T

L
 I

nt
er

fa
ce

read(0x10)

Mem FL

A
da

pt
er

R
T

L
 I

nt
er

fa
ce

read(0x10)

Mem FL

A
da

pt
er

R
T

L
 I

nt
er

fa
ce

read(0x10)

Figure 3: Port-Based Interfaces vs. Proposed Method-Based
Interfaces

appropriate adapter that tries to preserve as many method calls as
possible, instead of resorting to port-based connections.

Highly Parametrized Static Elaboration – Constructing a
highly parametrized hardware generator is one of the key motiva-
tions behind modern productive hardware modeling frameworks.
In PyMTL, the designer can leverage Python’s object-oriented pro-
gramming and dynamic typing features to intuitively parametrize
PyMTL components, as opposed to using low-level HDL’s limited
parametrization constructs and static typing. Python’s extensive
support for polymorphism allows the designers to pass parame-
ters of different types around and instantiate different models or
logic blocks based on value or type. The static elaboration process
executes valid Python code and can be inspected step by step.

Analysis andTransformPasses (Work inProgress) – PyMTL
provides APIs to query, add, and remove certain components in the
model hierarchywhere the root node is the top-level model. Inspired
by passes over intermediate representations (IR) in the software
realm, the designers can write passes that call these APIs to analyze
and transform the whole design. Previous work in Chisel [4] and
PyRTL [12] advocate for adding another hardware IR level between
the host language and a low-level HDL. We argue that PyMTL
passes over the module hierarchy at Python level are more intuitive
and productive. Analysis passes usually query a list of modules in
the hierarchy and accumulate the obtained information for a grand
goal. For example, we can query the total number of models that
has at least two input ports, a list of ports that starts with a spe-
cific name, or even the average number of statements of all logic
blocks. Transform passes modify the model hierachy. Increment-
only transform passes add components to instrument the design
without invoking APIs to remove components or connections. An
example is to add a child module and bring a signal up to the top
level by recursively going up the hierarchy to the top. Other passes
involve both adding and removing components or connections.
An example is to insert a wrapper component between a module
and its child module, which requires removing the child module
first, instantiating a new wrapper module, instantiating the same
child module within the wrapper module, and establishing all the
connections. Figure 4 shows code for these example passes.

Pure-Python Simulation – Unlike HGFs which translate the
high-level hardware description to low-level HDL and use an HDL
simulator, PyMTL’s simulation kernel is built in Python. The de-
signer can track the simulation cycle by cycle and line by line in
Python code at runtime instead of relying solely onwaveform-based
debugging. Note that PyMTL can also dump waveforms.

An Open-Source Python-Based HGSVF WOSET’18, Nov 8, 2018, San Diego, CA, USA

1 # Analysis pass example:
2 # Get a list of processors with >=2 input ports
3 def count_pass(top):
4 ret = []
5 for m in top.get_all_modules_filter(
6 lambda m: len(m.get_input_ports()) >= 2):
7 if isinstance(m, AbstractProcessor):
8 ret.append(m)
9 return m
10
11 # Increment-only transform pass example:
12 # Bring up state variable of every state machine to a top-level
13 # output port
14 def debug_port_pass(top):
15 for m in top.get_all_modules():
16 if m.get_full_name().startswith("ctrl"):
17 signal_type = m.state.get_type()
18 port_name = "debug_state" + mangle(m.get_full_name())
19
20 m_outport = m.add_output_port(port_name,
21 OutPort(signal_type))
22 m.add_connection(m_outport, m.state)
23
24 while m.has_parent():
25 p = m.get_parent()
26 p_outport = p.add_output_port(port_name,
27 OutPort(signal_type))
28 p.add_connection(p_outport, m_outport)
29 m, m_outport = p, p_outport
30
31 # Transform pass example:
32 # Wrap every ctrl with CtrlWrapper
33 def debug_port_pass(top):
34 for m in top.get_all_modules():
35 if m.get_full_name().startswith("ctrl"):
36 p = m.get_parent()
37 ctrl = p.delete_component("ctrl")
38 w = p.add_component("ctrl_wrap", CtrlWrapper())
39 new_ctrl = w.add_component("ctrl", m)
40 ...
41 < connect ports >
42 ...

Figure 4: Example of Analysis and Transform Passes

Simulating in a pure Python runtime means the designer can
leverage all the existing third-party Python packages for verifi-
cation. This significantly helps bring the success of open-source
software to open-source hardware. For example, machine learning
accelerator designers can import packages like PyTorch and Ten-
sorflow to generate input/reference datasets for test benches and
reuse the algorithm implementation for FL/CL models. PyMTL also
leverages existing open-source software testing/verification facili-
ties. py.test testing framework is used for instantiating numerous
tests from a single concise definition, and coverage.py tool is used
for line-by-line code coverage.

Property-Based Random Testing (Work in Progress) –
Constraint-based hardware verification frameworks such as UVM
have been widely adopted in the chip-building industry. How-
ever, there is no simulator that supports UVM in the open-source
hardware/EDA community. As the first step, PyMTL integrates
hypothesis, a sophisticated property-based random testing frame-
work which was originally designed for verifying Python software.
Hypothesis automatically generates numerous random test cases
according to a given "hypothesis strategy". After one test case fails,
hypothesis will try to construct a minimal failed test case by "auto-
shrinking". PyMTL will develop specialized strategies such as gener-
ating a random-length list of random packets for verifying PyMTL
designs as well as to verify the PyMTL framework itself by gener-
ating random logic statements.

Python/SystemVerilog Integration – PyMTL supports im-
porting SystemVerilog code for plug-and-play co-simulation and
composition with other PyMTL models or imported SystemVerilog
models. Combined with the ability to translate PyMTL RTL models
into Verilog code, PyMTL becomes a holistic hardware composition
and verification framework. Below are the three major advantages.

1 # By default PyMTL imports module DUT of DUT.v
2 # in the same folder as the python source file.
3 class DUT(VerilogModel):
4 def __init__(s):
5 s.in_ = InPort (Bits32)
6 s.out = OutPort (Bits32)
7
8 # Connect top level ports of DUT
9 # to corresponding PyMTL ports
10 s.set_ports({
11 'clk' : s.clk,
12 'reset' : s.reset,
13 'in' : s.in_,
14 'out' : s.out,
15 })

Figure 5: PyMTL Source Code for SystemVerilog Import

PyMTL MyHDL PyRTL Migen IVerilog CVS Mamba

Divider 118K CPS 0.8× 2.2× 0.03× 0.6× 9.3× 20×
1-core 20K CPS - - - 1× 15× 16×
32-core 360 CPS - - - 1.8× 25× 12×

Table 1: Simulation Performance Comparison – CPS = simu-
lated cycle per second; CVS = commercial Verilog simulator.

First, Verilog code generated by PyMTL can be validated by
co-simulating with the same PyMTL test bench from FL/CL/RTL
development. This helps make sure there are no code generation
mismatches and simulation mismatches. PyMTL generates Verilog
for tagged components, calls Verilator (an open-source SystemVer-
ilog simulator) to compile each generated Verilog file, compiles this
C++ into a shared library and dynamically links it back to PyMTL
program using CFFI (C Foreign Function Interface), and replaces
the tagged PyMTL model with the Verilog model. Compared to
hardware generation frameworks (HGF) where there is usually
no way to test if the translated HDL matches the high-level code,
PyMTL builds more confidence for RTL developers.

Second, PyMTL can help verification engineers even if they
are not writing PyMTL RTL models. They can take hand-written
SystemVerilog code, write a simple PyMTL wrapper as shown in
Figure 5, and build a PyMTL test bench to drive the simulation. At
a larger design scale, PyMTL can simulate a design composed of
many FL, CL, RTL, and SystemVerilogmodels based on how detailed
the designer models each component. This enables the designer to
productively verify SystemVerilog models using supporting FL/CL
PyMTL models in an end-to-end testing approach.

Third, PyMTL can act as a glue for composing multiple Sys-
temVerilog models and PyMTL RTL models. The imported code of
a child Verilog model is preserved when PyMTL translates the top-
level module to Verilog. Structural composition of SystemVerilog
models can take advantage of PyMTL’s parametrization power to
create a larger composition of wrapped SystemVerilog models.

Fast Simulation Speed – Adapted from our recent work [17],
Table 1 shows an apples-to-apples simulation performance compar-
ison of an iterative divider, a single RISC-V RV32IM [2] core hooked
up to a two-port test memory, and 32 cores hooked up to a 64-port
test-memory. PyMTL offers competitive simulation performance
compared to other HGSFs, but commercial HDL simulators can still
be orders of magnitude faster than HGSFs. Our work shows that
a carefully designed HGSF can close the simulation-performance
gap by deeply co-optimizing the HGSF and the underlying general-
purpose JIT compiler within the host high-level language. With
Mamba techniques, PyMTL’s pure-Python simulation performance
matches a commercial Verilog simulator and is 10X-20X faster than
the original PyMTL.

WOSET’18, Nov 8, 2018, San Diego, CA, USA S. Jiang et al.

3 PYMTL USE CASES
In this section, we discuss how PyMTL has already been employed
for teaching in the classroom, for driving computer architecture
research, and for building silicon prototypes.

3.1 PyMTL for Teaching
PyMTL has been used by over 400 students across two universities,
including in a senior-level undergraduate computer architecture
course at Cornell University (ECE 4750), in a similar course at
Boston University (EC 513), and in a graduate-level ASIC design
course at Cornell University (ECE 5745). The computer architecture
courses involved multiple design labs (integer multiplier, simple
RISC-V processor, set-associative blocking cache, and bus/ring net-
work), culminating in a final lab composing all previous components
to build a multi-core system. Students chose whether to design in
PyMTL, in SystemVerilog, or with a mix, but they were required
to test their designs using PyMTL. Overall, PyMTL accelerates stu-
dents’ learning curve. Developing and simulating the design in a
pure-Python runtime environment accommodates students with
more of a software background. PyMTL’s SystemVerilog integra-
tion feature shortens the iterative development cycle for students
with more of a hardware background.

3.2 PyMTL for Architecture Research
PyMTL has driven experiments for multiple computer architecture
research projects that have been published at top conferences.

The LTA [18] and XLOOPS [26] papers both modeled novel ac-
celerators as PyMTL CL models, which were then composed with
general-purpose control processors in gem5 [7] using PyMTL/gem5
co-simulation support (co-simulation is implemented using the
C Foreign Function Interface, CFFI). Gem5’s popular and well-
supported CPU models, memory system, and runtime features
are directly reusable, enabling researchers to focus their efforts
on exploring the accelerator design-space in PyMTL.

Similarly, DAE [10] and ParallelXL [9] both leveraged PyMTL,
with particular emphasis on the framework’s highly parametrized
static elaboration features for RTL design. These two papers ex-
plored the design of architectural templates that efficiently generate
tuned accelerators.

3.3 PyMTL for Silicon Prototyping
PyMTL designs have been taped out in advanced nodes includ-
ing TSMC 16 nm, TSMC 28 nm, and IBM 130 nm. The associated
projects have been published: Celerity [1, 13], BRGTC1 [29], and
BRGTC2 [28].

Celerity is a 5×5mm 385M-transistor chip in TSMC 16 nm de-
signed and implemented by a large team of over 20 students and
faculty from UC San Diego, University of Michigan, and Cornell
as part of the DARPA Circuit Realization At Faster Timescales
(CRAFT) program. PyMTL played a key role in the integration of a
complex HLS-generated BNN (i.e., binarized neural network) with
the broader system’s general-purpose compute tier (i.e., five modi-
fied Chisel-generated RISC-V Rocket cores) as well as its massively
parallel compute fabric (i.e., 496-core RISC-V tiled manycore proces-
sor). The BNN was wrapped with PyMTL-generated parametrized
RoCC wrappers and adapters, and these wrappers were generic and
were automatically generated using reflection. The wrapped BNN
was translated back to Verilog for composition with the rest of the
chip. The control blocks for the high-speed links between the BNN
and the manycore were also designed and verified in PyMTL.

Open-Source HW PyMTL Motivation PyMTL v2 • PyMTL v3 • PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

PyMTL ASIC Tapeouts

BRGTC1 in 2016
RISC processor, 16KB SRAM

HLS-generated accelerator

2x2mm, 1.2M-trans, IBM 130nm

Memory

Instruction Memory Arbiter

L1 Data $
(32KB)

LLFU Arbiter

Int Mul/Div
FPU

L1 Instruction $
(32KB)

H
os

t I
nt

er
fa

ce
Sy

nt
he

si
za

bl
e

PL
L

ArbiterData

BRGTC2 in 2018
4xRV32IMAF cores with “smart”

sharing L1$/LLFU, PLL

1x1.2mm, ⇡10M-trans, TSMC 28nm

Cornell University Christopher Batten 26 / 50

(a) Chip Diagram of BRGTC1 (b) Block Diagram of BRGTC2
Figure 6: BRGTC1 and BRGTC2

BRGTC1 (i.e., Batten Research Group Test Chip 1) was imple-
mented nearly entirely using PyMTL. BRGTC1 marked the first ex-
ploration of the interaction between PyMTLRTL andHLS-generated
Verilog models. The prototype is a small 2×2mm 1.3M-transistor
chip in IBM 130 nm, and it pairs a simple pipelined 32-bit RISC
processor developed in PyMTL with an HLS-generated application-
specific accelerator. Fabricated BRGTC1 chips have been post-silicon
validated for functionality using assembly tests. Our BRGTC1 lab-
bench setup re-uses the PyMTL test suite to drive signals through
a "host" FPGA base board (i.e., Xilinx Zedboard) and out to an
FMC-connected daughter card that contains the test chip.

BRGTC2 (i.e., Test Chip 2) was built with much more aggres-
sive use of PyMTL, resulting in a 1×1.25mm 6.7M-transistor chip
in TSMC 28 nm. The chip contains four RISC-V RV32IMAF cores
sharing a 32kB instruction cache, a 32kB data cache, and a single-
precision floating point unit, along with microarchitectural mecha-
nisms to mitigate the performance impact of resource sharing. The
BRGTC2 project stressed PyMTL’s features extensively. For exam-
ple, multi-level modeling supported debugging efforts by enabling
the team to swap in an FL cache to narrow the location of an RTL
bug down to other components. A single PyMTL test suite is used to
test all modeling abstractions, including the FL, CL, RTL, and even
gate-level models. As another success, the floating-point unit was
designed using a collection of Synopsys DesignWare components
that were each Verilog-imported into PyMTL for composition and
simulation. Overall, the PyMTL framework was a tremendous suc-
cess as a productive hardware modeling framework for designing
two non-trivial research test chips.

4 CONCLUSION
The PyMTL framework and the code used for Mamba paper have
been open-sourced at https://github.com/cornell-brg/pymtl
and https://github.com/cornell-brg/mamba-dac2018. We an-
ticipate a new release of PyMTL in 2019.

ACKNOWLEDGMENTS
This work was supported in part by NSF CRI Award #1512937, NSF
SHFAward #1527065, DARPA POSHAward #FA8650-18-2-7852, and
a donation from Intel. The authors acknowledge and thank Derek
Lockhart for his valuable feedback and his work on the original
PyMTL framework. The authors would like to thank Ajay Joshi for
using PyMTL for the computer architecture course at Boston Uni-
versity. The author also thank all the students who have provided
feedback to PyMTL. U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding
any copyright notation theron. Any opinions, findings, and conclu-
sions or recommendations expressed in this publication are those
of the author(s) and do not necessarily reflect the views of any
funding agency.

An Open-Source Python-Based HGSVF WOSET’18, Nov 8, 2018, San Diego, CA, USA

REFERENCES
[1] T. Ajayi et al. Celerity: An Open Source RISC-V Tiered Accelerator Fabric. Symp.

on High Performance Chips (Hot Chips), Aug 2017.
[2] K. Asanovic et al. Instruction Sets Should Be Free: The Case for RISC-V. Technical

report, UCB/EECS-2014-146, Aug 2014.
[3] C. Baaij et al. Cλash: Structural Descriptions of Synchronous Hardware Using

Haskell. Euromicro Conf. on Digital System Design (DSD), Sep 2010.
[4] J. Bachrach et al. Chisel: Constructing Hardware in a Scala Embedded Language.

Design Automation Conf. (DAC), Jun 2012.
[5] S. Belloeil et al. Stratus: A Procedural Circuit Description Language Based Upon

Python. Int’l Conf. on Microelectronics (ICM), Dec 2007.
[6] P. Bellows et al. JHDL-An HDL for Reconfigurable Systems. Symp. on FPGAs for

Custom Computing Machines (FCCM), Apr 1998.
[7] N. Binkert et al. The gem5 Simulator. SIGARCH Computer Architecture News

(CAN), 39(2):1–7, Aug 2011.
[8] P. Bjesse et al. Lava: Hardware Design in Haskell. Int’l Conf. on Functional

Programming (ICFP), Sep 1998.
[9] T. Chen et al. An Architectural Framework for Accelerating Dynamic Parallel Al-

gorithms on Reconfigurable Hardware. Int’l Symp. on Microarchitecture (MICRO),
Oct 2018.

[10] T. Chen et al. Efficient Data Supply for Hardware Accelerators with Prefetching
and Access/Execute Decoupling. Int’l Symp. on Microarchitecture (MICRO), Oct
2016.

[11] K. Claessen et al. QuickCheck: a lightweight tool for random testing of Haskell
programs. ACM SIGPLAN Notices, 46(4):53–64, Apr 2011.

[12] J. Clow et al. A Pythonic Approach for Rapid Hardware Prototyping and Instru-
mentation. Int’l Conf. on Field Programmable Logic (FPL), Sep 2017.

[13] S. Davidson et al. The Celerity Open-Source 511-Core RISC-V Tiered Accelerator
Fabric: Fast Architectures and Design Methodologies for Fast Chips. IEEE Micro,
Mar 2018.

[14] J. Decaluwe. MyHDL: A Python-based Hardware Description Language. Linux
Journal, Nov 2004.

[15] P. Haglund et al. Hardware Design with a Scripting Language. Int’l Conf. on Field
Programmable Logic (FPL), Sep 2003.

[16] J. Jennings et al. Verischemelog: Verilog Embedded in Scheme. Conf. on Domain-
Specific Languages (DSL), Oct 1999.

[17] S. Jiang et al. Mamba: closing the performance gap in productive hardware
development frameworks. Design Automation Conf. (DAC), Jun 2018.

[18] J. Kim et al. Using Intra-Core Loop-Task Accelerators to Improve the Productivity
and Performance of Task-Based Parallel Programs. Int’l Symp. on Microarchitec-
ture (MICRO), Oct 2017.

[19] Y. Li et al. HML, A Novel Hardware Description Language and Its Translation to
VHDL. IEEE Trans. on Very Large-Scale Integration Systems (TVLSI), 8(1):1–8, Dec
2000.

[20] D. Lockhart et al. PyMTL: A Unified Framework for Vertically Integrated Com-
puter Architecture Research. Int’l Symp. on Microarchitecture (MICRO), Dec
2014.

[21] A. Mashtizadeh. PHDL: A Python Hardware Design Framework. Master’s thesis,
EECS Department, MIT, May 2007.

[22] Migen. https://m-labs.hk/gateware.html.
[23] M. Naylor et al. A generic synthesisable test bench. Int’l Conf. on Formal Methods

and Models for Co-Design (MEMOCODE), Sep 2015.
[24] N. Nikhil. Bluespec System Verilog: Efficient, Correct RTL from High-Level Spec-

ifications. Int’l Conf. on Formal Methods and Models for Co-Design (MEMOCODE),
Jun 2004.

[25] O. Shacham et al. Rethinking Digital Design: Why Design Must Change. IEEE
Micro, 30(6):9–24, Nov/Dec 2010.

[26] S. Srinath et al. Architectural Specialization for Inter-Iteration Loop Dependence
Patterns. Int’l Symp. on Microarchitecture (MICRO), Dec 2014.

[27] systemc tlm. SystemC TLM (Transaction-level Modeling). Online Webpage,
accessed Oct 1, 2014. http://www.accellera.org/downloads/standards/
systemc/tlm.

[28] C. Torng et al. A New Era of Silicon Prototyping in Computer Architecture
Research. The RISC-V Day Workshop at the 51st Int’l Symp. on Microarchitecture,
Oct 2018.

[29] C. Torng et al. Experiences Using a Novel Python-Based Hardware Modeling
Framework for Computer Architecture Test Chips. HOTCHIPS Student Poster,
Aug 2016.

