
Hierarchical Asynchronous Circuit Kompiler Toolkit
(HACKT)

David Fang
fangism@google.com

”I don’t think it is a technical issue, but an in-
frastructure support problem. It’s the chicken-or-egg
question all over again: we cannot easily design
asynchronous systems because appropriate tools
aren’t available. And there are no tools, the EDA
houses say, because there is no demand for them.”

Bernard Cole, August, 2002 [1]

Abstract—The self-timed circuits (also known as asynchronous
circuits) community has been divided over styles of circuit design,
and consequently has not been able to cross-leverage tools,
commercial or open-source. Unification of tools is a challenge
because few research groups use the same techniques, description
languages, or conventions. Without a singular demand, EDA
tool companies have no incentive to develop tools for self-timed
circuits. Self-timed circuits tools often follow one of the following
outcomes: abandonment (after developers graduate), or kept
proprietary as intellectual property. We present HACKT, a self-
timed circuits toolset that was forged in academic fires, tempered
in industry, proven with production silicon, supports a multitude
of design styles, and is already open-source1.

I. SELF-TIMED CIRCUITS OVERVIEW

Self-timed circuits communicate using handshakes between
locally synchronized processes, instead of using a global
control signal like a clock. A clock edge indicates when it
is safe to sample a signal, and is timed with margins to
ensure safety. With self-timed circuits, handshaking protocols
use an explicit acknowledgment to indicate when it is safe for
a responder to update a signal. Self-timed circuits’ behavior
can be modeled at a high level of abstraction as concurrent
dataflow pipelines. Data-driven decomposition and projec-
tion are transformations that refine concurrent programs into
primitive handshake elements using explicit communication
of values over channels [2], [3]. Decomposition introduces
fine-grain pipelining, which helps achieve high performance.
Since timing behavior is independent from correctness, a large
class of slack-elastic designs have the liberty of adjusting the
amount of pipelining for performance and energy optimiza-
tion [4]. Self-timed circuits are data-driven and self-idling,
making them well-suited for energy-constrained applications
with bursty activity. Conditional communication elements (e.g.
splits, merges) can idle entire paths for further energy reduc-
tion. Clockless, handshaked interfaces make self-timed circuits
truly modular in design, and simple to integrate and reuse,

1The HACKT project was developed while the author was affiliated with
Cornell University (2004-2008) and Achronix Semiconductor (2008-2014),
prior to joining Google.

without the need for frequency matching or clock domain
crossing. Self-timed circuits are robust to timing variations
(due to process variation, thermal and power supply dynam-
ics), which makes them correct by construction, without the
need for global timing closure.

There is an entire conference devoted to the study and ap-
plication of self-timed circuits, ASYNC [5]. The general self-
timed circuits community, however, remains fractured over the
multitude of self-timed circuit design families. Tradeoffs exist
over the spectrum of design styles, ranging from conservative
(fewest timing assumptions, easiest to formally verify) to the
aggressive (more effort to verify local timing assumptions).
The tools we present are amenable to a wide range of self-
timed circuit families.

II. SELF-TIMED CIRCUITS TOOLCHAIN

Hierarchical Asynchronous Circuit Kompiler Toolkit
(HACKT) is a collection of EDA tools whose original
purpose was to aid in designing and verifying quasi delay-
insensitive (QDI) self-timed circuits. QDI circuits are the most
timing-conservative design discipline that is Turing-complete:
they assume no relationship between gate delays, and only
isochronic forks on wires [6], [7]. The language used by the
tools is so low-level (transistors and wires) that it can be used
to describe most digital logic and circuit topologies, thereby
making it usable for specifying most self-timed circuit design
families, and just as suitable for designing synchronous
circuits.

III. LANGUAGE

A. HAC

HAC (Hierarchical Asynchronous Circuits) is the struc-
tural language for expressing a hierarchy of instances and
connectivity, without any behavior. Behavior and logic are
expressed in two sub-languages: CHP and PRS. HAC syntax is
summarized in Appendix A. Despite the name, it is agnostic
to circuit design methodology, and suitable for synchronous
circuits.

B. CHP

The Communicating Hardware Processes (CHP) language
is a dialect of CSP that expresses high-level computation
and communication actions [8], [9]. It is primarily used for
prototyping self-timed systems without concern for handshak-
ing protocols and other circuit implementation details. In
practice, CHP often serves as a concurrent dataflow reference

model for verifying self-timed implementations. CHP syntax
is summarized in Appendix B.

C. PRS
The Production Rule Set (PRS) language expresses gate-

level logic and circuit topologies. Every rule of PRS is of
the form G → S, where G is a boolean expression, and S
is a pull-up or pull-down action. Boolean operators & and
| translate directly to series and parallel connections, and
are a convenient shorthand that synthesize directly to SPICE
netlists. Synchronous circuits can be expressed using rules that
explicitly involve a clock signal, which are typically in flip-
flops. PRS syntax is summarized in Appendix C.

D. Example
CHP and PRS do not intermingle, so they are compiled and

simulated separately. We illustrate how these languages work
using a single-bit pipeline buffer as an example.

Listing 1. CHP specification for a token buffer
/ / b u f i s a s i n g l e −p l a c e p i p e l i n e e l e m e n t
/ / t h a t p a s s e s a v a l u e from c h a n n e l L t o R
defproc buf(chan?(bool) L; chan!(bool) R) {
bool data;
chp {
*[L?(data); R!(data)]

}
}

The CHP program in Listing 1 specifies the pipeline behav-
ior for a buf , (infinitely read from channel L, and send that
data out on channel R) but does not specify its implementation.
L and R are native channel types that are only specified to
transport a boolean value. Data types such as bool and int
in CHP are abstract, and could be implemented with different
encodings.

The PRS program in Listing 2 shows one possible imple-
mentation, using a 4-phase handshake protocol with an active-
low acknowledgement on channels L and R. A single boolean
variable is encoded dual-rail. This variant is called a weak-
condition half-buffer and is quasi delay-insensitive [10].

For brevity, the Listing 2 omits staticizers (also known
as keepers), reset logic, and transistor sizes. Explicit reset
logic is needed for functional simulation and verification.
Staticizers and transistor sizes are needed for netlist gener-
ation, analog simulation and verification, and physical design.
Physical design methodology (such as library development and
characterization targeting each process node) can be built on
top of these tools.

E. Circuit Library
HACKT is distributed with a modest library of circuits in

PRS:
• Standard combinational logic elements, SRAM cell
• 4-phase handshake QDI cells: buffers, copiers, splits,

merges, alternators
The provided library elements are intended for functional

simulation, and defined without transistor sizes.

Listing 2. One possible PRS implementation of Listing 1
/ / dual−r a i l c h a n n e l w i t h
/ / a c t i v e −low acknowledgement ’ e ’
/ / p r o t o c o l : 4−phase
defchan e1of2 <: int<1> (bool d[2]; bool e) { }

/ / weak−c o n d i t i o n h a l f−b u f f e r i m p l e m e n t a t i o n ,
/ / w i t h o u t r e s e t
defproc buf(e1of2? L; e1of2! R) {
_c1of2 _r;
bool rv;
prs {

(:i:2:
/ / M u e l l e r C−e l e m e n t : p u l l−down , p u l l−up
R.e & L.d[i] -> _r.d[i]-

˜R.e & ˜L.d[i] -> _r.d[i]+

/ / o u t p u t d r i v e r
_r.d[i] => R.d[i]-

)

/ / R c o m p l e t i o n d e t e c t i o n (NAND)
_r.d[0] & _r.d[1] => rv-

/ / L acknowledgement d r i v e r
rv => L.e-

}
}

IV. PROGRAMS

HACKT’s design entry is text only; there is no graphical
schematic entry. All tools are invoked from the command-line
and text-based. The front-end tools are:

• haco compiles source to an un-elaborated object file.
• haccreate elaborates the design into another object

file. Elaboration also checks connectivity: type, direction,
drivers, point-to-point use of channels.

The back-end tools operate on an elaborated object file:
• hacprsim simulates PRS (interactive or scripted).
• hachpsim simulates CHP (interactive or scripted).
• hacknet generates SPICE netlists from PRS.

A. PRS Simulator (hacprsim)

hacprsim is the most mature tool in the HACKT suite.
hacprsim is a discrete event simulator that can be driven
interactively in the simulator’s shell or scripted. An event is
a change in the value of a bool in the system, which can
cause subsequent events to be scheduled in the global event
queue. Gate delays are modeled as the time between when
an event is scheduled (guard becomes true) to when the event
fires, changing a bool’s value.

The following key features of hacprsim are useful for
verifying self-timed circuits:

• Randomized timing modes, that vary gate delays, are
very effective at catching timing assumptions and race
conditions missed by designers.

• Detecting event instability (such as a glitch, when a
guard of a production rule becomes false before the

output transition occurs). Instability indicates a failure
to acknowledge a transition before allowing a guard’s
evaluation to change, or an implicit timing assumption.

• Detecting interference, contention between opposing
pulls. Such errors can occur in non-combinational logic.

• Conservative and contagious X-propagation. X’s can arise
from instabilities or interference (with zero delay).

• Checking invariant expressions of signals.
The channel-* family of commands is dedicated to

setting up channel-based environments that interface with the
DUT by driving and responding to signal changes. Natively
supported protocols include: 4-phase, 2-phase, bundled-data,
level-encoded dual-rail, and clocked (posedge, negedge, any-
edge) [11], [12]. Simulator-defined channels can be used to
source values on an input channel, consume-and-check values
on an output channel, or observe transactions on any channel
in the DUT’s hierarchy. Channel query commands can report
the current state or value of a channel, as well as which phase
of its protocol it is currently in (and whose turn is next).

For debugging, there are commands to show the status,
fanin, and fanout of any signal in the hierarchy. The global
event queue is viewable to the user at all times, and also
features some commands to re-order or manipulate pending
events for directed scenario testing. There are also commands
to query for signals that are in various states: 0, 1, X, floating,
interfering. The backtrace command gives a recent causal-
ity chain of events that led to the state of a particular node, and
can also be interpreted as a critical path when simulating with
realistic delays. The why-* family of commands recursively
traces drivers at one instant in time to report why a signal is
in a particular state, displaying the result in an ASCII tree.
The simulator’s interpreter offers filesystem-like view of the
design hierarchy for convenience (e.g. cd, pushd, ls).
hacprsim offers control over output verbosity (to stdout),

and also supports exporting trace files in its own internal
format as well as VCD. Checkpoint saving and restoration
are useful features for resuming long-running simulations and
performing post-mortem analysis.
hacprsim is also available as a VPI co-simulation plug-

in that has been demonstrated with Synopsys VCS and Ca-
dence Incisive [13]. Co-simulation combines the benefit of the
verification-rich features of languages like SystemVerilog with
the diagnostic features and detail-level of hacprsim, and has
been crucial for verifying mixed-discipline circuits. The co-
simulation module offers all of the features of the standalone
simulator except for direct control over the PRS event queue,
which is relegated to the host Verilog simulator. The tool
suite includes some scripts that help automate connecting
signals between hacprsim and the corresponding Verilog
stub modules.

B. CHP Simulator (hacchpsim)

hachpsim is another event-driven simulator for simulating
concurrent dataflow execution, whose events consist of value
changes and changes in channel states (full, empty). This is
most useful for developing the concurrent dataflow models for

self-timed circuits. One can test equivalence between two CHP
programs, where one may be a decomposed or transformed
version of the other. It can also serve as the functional
model for verifying implementations in PRS. hachpsim
has the same style of interactive interpreter as hacprsim.
hachpsim also offers its own trace file format and check-
pointing, but does not have its own co-simulation module.

C. Netlist Generator (hacknet)

hacknet translates PRS into hierarchical SPICE netlists,
which in turn are inputs to LVS and analog simulators (like
SPICE), and are critical for physical design. The syntax-
directed translation is straightforward, as rules in the PRS
language dictate circuit topology: &s are series connections,
|s are parallel connections, pull-ups are sourced by power
supplies, pull-downs are sourced by ground, and outputs are
connected to drains. The generated netlists are technology-
configurable: a configuration file controls scaling and transistor
dimensions (such as lambda, min-width, min-length), parasitic
load, and name-mangling. hacknet processes every unique
module in the design hierarchy once, making it highly scalable.
It can also emit output in Cadence Spectre format as well as
Verilog modules with fake device primitives.

V. HACKT FACTS

• Homepage: http://vlsi.cornell.edu/∼fang/hackt/ (last up-
dated 2015)

• Source: http://github.com/fangism/hackt
• License: GPL2 (since 2007)
• Team: David Fang (1 primary developer, since 2004)
• Written in C++ (mostly pre-C++11 style), 200k LoC
• Build: GNU tools: autoconf, automake, libtool

(configure && make)
• Status: Stable, last major development work in 2014
• Qualities:

– Extensive test suite, 13k+ integration tests
– Portable across generations of compilers and plat-

forms (ca. 2002 through 2014)
– Scalable to multi-billion gate-equivalent designs

• Known customers: Achronix Semiconductor (2008 to
present)

VI. SUMMARY

HACKT is ...
• A suite of EDA tools: simulators, netlist generator
• Suitable for self-timed circuits and synchronous circuits
• Suitable for academic use and chip production in industry
• Open-source and free to use

APPENDIX A
HAC SYNTAX

Primitives: defproc is like module in Verilog. bool is
like wire in Verilog. There is no equivalent to reg, which
conveys state-holding sequential logic.
Port direction: ? is an input, ! is an output, e.g.

defproc mux2(bool? in[2], select; bool! out) { }

http://vlsi.cornell.edu/~fang/hackt/
http://github.com/fangism/hackt

Connections:
• positionally by instance’s ports:

instance_name(a, b, c);

• or with alias statements:

a = bar.x;

Parameterization:
• Definition:

template <pbool X; pint Y>
defproc foo(...) {...}

• Instantiation: foo<p, q> bar(...);

Multi-dimensional arrays:

bool values[4][5][6];

Loop generate:

(;i:N: buffer[i](data[i], data[i+1]);)

Conditional generate:

[A&&B -> corner_tile ct(...);
[] E -> edge_tile et(...); / / e l s e− i f
[] else -> normal_tile nt(...);
]

User-defined data structures (also parameterizable):
defchan e1of2 <: int<1> (bool d[2]; bool e) { }

APPENDIX B
CHP SYNTAX

chp { } enter CHP sub-language in defproc

*[...] repeat forever (most processes)
X?(x) receive on channel X

into variable x (blocking)
Y!(y) send value of y onto

channel Y (blocking)
a := ...; assign RHS expression to variable a
[G->S if G, do S, else do T
[]else->T] (deterministic selection)
A,B do A and B in parallel
A;B do A before B

APPENDIX C
PRS SYNTAX

prs { } enter PRS sub-language in defproc
expr -> x+ when expr is true, pull x up
expr -> x- when expr is true, pull x down
expr => x- infer combinational inverse

for opposite pull
expr #> x- invert literals for opposite pull

(for C-elements)
p -> when p is true, pull
˜p -> when p is false, pull
p & q logical AND
p | q logical OR

CMOS constraint: Only guards with negated literals can pull-
up (PMOS), and only non-negated literals may pull-down
(NMOS).

Examples:
NAND gate:
˜p | ˜q => z+

Mueller C-element (3-input, non-inverting):
a & b & c #> _o-
_o => o-

Ratioed weak-feedback keeper (using a rule attribute):
[weak=1] ˜o -> _o+

Combinational feedback keeper:
˜o & (˜a | ˜b | ˜c) => _o+

Advanced netlisting features:
Precharging internal node with en PMOS pull-up:
en &{˜en+} x & y -> _o-

Defining and using shared internal node @zin:
en & z -> @zin-
˜@zin & y1 -> _o1-
˜@zin & y2 -> _o2-

Transistor-sizing: gate a is W units wide, L units long, high-
voltage threshold variant
a<W,L;hvt> -> b-

Power supply overriding, for multi-power domain design:
prs<Vdd2> { rules... }

REFERENCES

[1] B. Cole, “Will self-timed asynchronous logic rescue CPU design?,” Aug.
2002.

[2] C. G. Wong and A. J. Martin, “Data-driven process decomposition for
circuit synthesis,” in 8th IEEE International Conference on Electronics,
Circuits and Systems, vol. 1, pp. 539–546, Sept 2001.

[3] R. Manohar, T.-K. Lee, and A. J. Martin, “Projection: A synthesis
technique for concurrent systems,” in Proceedings of the 5th Inter-
national Symposium on Advanced Research in Asynchronous Circuits
and Systems, ASYNC ’99, (Washington, DC, USA), pp. 125–, IEEE
Computer Society, 1999.

[4] R. Manohar and A. J. Martin, “Slack elasticity in concurrent computing,”
in Proceedings of the Mathematics of Program Construction, MPC ’98,
(London, UK, UK), pp. 272–285, Springer-Verlag, 1998.

[5] “IEEE Symposium on Asynchronous Circuits and Systems (ASYNC).”
http://asyncsymposium.org/.

[6] A. J. Martin, “The limitations to delay-insensitivity in asynchronous
circuits,” in Proceedings of the Sixth MIT Conference on Advanced
Research in VLSI, AUSCRYPT ’90, (Cambridge, MA, USA), pp. 263–
278, MIT Press, 1990.

[7] R. Manohar and A. J. Martin, “Quasi-delay-insensitive circuits are
turing-complete,” in 2nd International Symposium on Advanced Re-
search in Asynchronous Circuits and Systems, 1995.

[8] A. J. Martin, “Compiling communicating processes into delay-
insensitive VLSI circuits,” tech. rep., Pasadena, CA, USA, 1986.

[9] C. A. R. Hoare, “Communicating sequential processes,” Commun. ACM,
vol. 21, pp. 666–677, Aug. 1978.

[10] A. M. Lines, “Pipelined asynchronous circuits,” Master’s thesis, Cali-
fornia Institute of Technology, Pasadena, CA, USA, 1995.

[11] J. Sparsø and S. Furber, Principles of Asynchronous Circuit Design:
A Systems Perspective. Springer Publishing Company, Incorporated,
1st ed., 2010.

[12] M. E. Dean, T. E. Williams, and D. L. Dill, “Efficient self-timing
with level-encoded 2-phase dual-rail (LEDR),” in Proceedings of the
University of California Santa Cruz Conference on Advanced Research
in VLSI, (Cambridge, MA, USA), pp. 55–70, MIT Press, 1991.

[13] S. Sutherland, The Verilog PLI Handbook: A Tutorial and Reference
Manual on the Verilog Programming Language Interface. Norwell, MA:
Springer, 2002.

http://asyncsymposium.org/

	I Self-timed Circuits Overview
	II Self-timed Circuits Toolchain
	III Language
	III-A HAC
	III-B CHP
	III-C PRS
	III-D Example
	III-E Circuit Library

	IV Programs
	IV-A PRS Simulator (hacprsim)
	IV-B CHP Simulator (hacchpsim)
	IV-C Netlist Generator (hacknet)

	V HACKT Facts
	VI Summary
	Appendix A: HAC Syntax
	Appendix B: CHP Syntax
	Appendix C: PRS Syntax
	References

