
OpenTimer 2.0: A High-performance Timing

Analysis Tool for VLSI Systems

Tsung-Wei Huang∗, Chun-Xun Lin∗, and Martin Wong∗
∗Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, IL, USA

Abstract—Since the first release in 2015, OpenTimer has
gained much attention from both industry and academia. Open-
Timer is an award-winning tool in the ACM TAU Timing
Analysis Contests (2014 through 2016) and the golden timer
of many related CAD contests that encourage researchers and
students to contribute their ideas to EDA community. These
efforts also help energize academic research and developments
in EDA systems, especially on the open-source front. After three
year developments, we have announced OpenTimer 2.0 in 2018
– a major release under MIT license. We rewrote the entire
OpenTimer codebase using modern C++17 and developed a
new incremental timing engine using our parallel programming
library Cpp-Taskflow. Compared to the previous generation,
version 2 largely improved functionalities, standard input format
supports, multi-threading, and runtime performance. OpenTimer
is selected as part of the open-source silicon compiler project
IDEA, funded by DARPA. We are committed to offer multi-year
supports hopefully moving toward sign-off capability. OpenTimer
is available at GitHub https://github.com/OpenTimer/OpenTimer.

I. MOTIVATION

The lack of accurate and fast algorithms for high-

performance timing analysis tool with incremental capabil-

ity has been recently pointed out as a major weakness of

existing timing optimization flows. In deep submicron era,

timing-driven operations are imperative for the success of

optimization flows. Optimization transforms change the design

and therefore have the potential to significantly affect timing

information. The timer must reflect such changes and update

timing information incrementally and accurately in order to

ensure slack integrity as well as reasonable turnaround time

and performance. However, such process requires extremely

high complexity especially when path-based analysis is config-

ured. A high-quality incremental timer capable of path-based

analysis is definitely advantageous in speeding up the timing

closure.

II. THE VERSION 1

In 2015, we release OpenTimer version 1. The previous

generation was called UI-Timer. UI-Timer was the first place

winner in the 2014 ACM TAU Timing Analysis Contest on

Common Path Pessimism Removal. During the contest, we

developed a new path-based timing analysis algorithm using

constant time and space to represent a critical path. The results

were far faster from all participants by more than an order of

magnitude. Later on, we decided to release the source code

of the tool and renamed it to OpenTimer. Since then, we have

kept working on the core development and won several awards

from the ACM TAU Timing Analysis Contest in 2015 through

2016. At the same time, we collaborated with both industry

experts and academic scholars to organize timing analysis

contests using OpenTimer as the golden timer. This included

ACM TAU Timing Analysis Contest in 2016 through 2019,

and 2015 IEEE/ACM ICCAD CAD Contest on Timing-driven

Incremental Detailed Placement.

III. THE VERSION 2

The results of our research and developments made us

acquire the funding from DARPA under the category of IDEA

project to support our continuing effort. in 2018 May, we made

a new major release called OpenTimer 2.0 and switched the

license from GPL to MIT. We rewrote the code base using

modern C++17 and leveraged the parallel tasking model of our

another open-source project called Cpp-Taskflow to redesign

the core incremental timing engine. The main difference

between v1 and v2 is the parallelization framework in the

incremental timing, where v1 used OpenMP and v2 used Cpp-

Taskflow.

A. Software Cost

TABLE I: Software Costs of OpenTimer v1 and v2

Tool Task Model SLOC Effort Sched Dev Cost

v1 OpenMP 4.5 9,123 2.04 0.70 2.90 $275,287

v2 Cpp-Taskflow 4,482 0.97 0.53 1.83 $130,523

Effort: development effort estimate, person-years (COCOMO model)
Sched: largest estimated schedule of a component (COCOMO model)
Dev: estimated average number of developers (efforts / schedule)
Cost: total estimated cost to develop (average salary = $56,286/year).

Table I measures the software costs between the two ver-

sions of the OpenTimer core using the Linux tool SLOCCount.

The cost estimate is based on the constructive cost model

(COCOMO) under the organic mode – small teams with

good experience working on a research-driven environment.

Compared with OpenMP tasking, Cpp-Taskflow offers a better

programmability to describe graph workloads. In OpenTimer

v2, a large amount of exhaustive OpenMP dependency clauses

that were used to carry out dynamic tasking are now replaced

with only a few lines of flexible Cpp-Taskflow code. We

attribute this to the library programmability, which has the

potential to affect the software cost in various aspects such

as code complexity, development effort, and delivery costs

(see Table I). While our measurement may not be perfect,

it provides a valuable insight into the software cost caused

by the library programming model in a large-scale application

made up of multi-year research effort.

inp1 u1:A

u1:Y

clock f1:CLK

f1:D

out

u4:A

u4:B u4:Y

inp2 u1:B

u2:A u2:Yf1:Q u3:A u3:Y

Fig. 1: An example task dependency graph of a single timing

update.

B. Parallel Incremental Timing

In terms of algorithms, OpenTimer v1 relied on a bucket-

list data structure to model the task dependency and performed

parallel timing propagations in a pipeline fashion. We found

it very difficult to go beyond this paradigm with OpenMP due

to unpredictable graph structures during incremental timing

update. With Cpp-Taskflow, we are able to break this bottle-

neck. Cpp-Taskflow’s graph description language allows us to

model both static and dynamic task dependencies regardless

of graph structures. The task dependency graph works seam-

lessly with the timing graph, allowing computations to flow

asynchronously rather than level by level. Figure 1 shows an

example task dependency graph (critical timing path on black)

of a single timing update on a sample circuit.

Fig. 2: Runtime comparisons of the incremental timing be-

tween OpenTimer v1 (OpenMP) and v2 (Cpp-Taskflow). The

average runtime of v2 is about 2× faster than v1.

Fig. 3: Scalability of OpenTimer v2 and detailed profiles of

the incremental timing across different number of threads.

Figure 2 demonstrates the performance comparison of the

incremental timing between OpenTimer v1 and v2. For fair

purpose, we disabled all new features in v2 and considered

only the basic graph-based update to make both perform the

same timing computations. We evaluated the runtime versus

the incremental iterations on two real circuit designs tv80

(5.3K gates and 5.3K nets) and vga lcd (139.5K gates and

139.6K nets) with 45nm NanGate cell library. As shown in

Figure 2, v2 is consistently faster than v1 (2.14× on tv80 and

2.19× on vga lcd). The profiler attributes 64% of the speed-

up to the removal of levelization and 36% to the task-based

timing updates. Next we demonstrate the scalability of v2.

In this experiment we enabled all new features to perform

complete timing analysis including path-based analysis on

vga lcd. Figure 3 shows the runtime scalability versus differ-

ent core (thread) counts, and detailed profiles in incremental

timing. The speed-up rate at four threads is about 2.33×. We

also obtain a consistent speed-up at each incremental timing

iteration. Depending on the circuit structure, the speed-up

curve varies a lot. In a proprietary design, we achieved 3.7×

faster with four threads.

C. Application Programming Interface

At programming level, OpenTimer v2 has incorporated

many new changes. To enable efficient incremental timing,

the API is categorized to three groups:

• Builder. OpenTimer maintains a lineage graph of builder

operations to create a task execution plan (TEP). A TEP

starts with no dependency and keeps adding tasks to the

lineage graph every time user calls a builder operation. It

records what transformations need to be executed after an

action has been called.

• Action. A TEP is materialized and executed when the

timer is requested to perform an action operation. Each

action operation triggers timing update from the earliest

task to the one that produces the result of the action call.

Internally, OpenTimer creates task dependency graph to

update timing in parallel, including forward (slew, arrival

time) and backward (required arrival time) propagations.

• Accessor. The accessor operations let you inspect the timer

status and dump timing information. All accessor operations

are declared as constant methods in the timer class. Calling

them promises not to alter any internal members. For

example, you can dump the timing graph into a dot format

and use tools like GraphViz for visualization.

We also incorporated many new features and function-

alities such as OpenTimer shell to enable interactive tim-

ing analysis and continuous integration framework to build

up the contribution flow. Please refer to our GitHub at

https://github.com/OpenTimer/OpenTimer for more details.

2

