
Ophidian: an Open-Source Library for Physical Design Research
and Teaching

Renan Netto, Tiago Augusto Fontana, Sheiny Fabre, Bernardo Ferrari,
Vinicius Livramento, Thiago Barbato, João Souto, Chrystian Guth, Laércio Pilla and José Luís

Güntzel
Embedded Computing Lab (ECL) — Dept. of Computer Science and Statistics

Federal University of Santa Catarina (UFSC)
Florianópolis, Brazil

{renan.netto, tiago.fontana, sheiny.fabre}@posgrad.ufsc.br

ABSTRACT
There is a lack of open source physical design automation software
infrastructure that could be used by researchers to try new algo-
rithms with as little e�ort as possible, and by students to easily un-
derstand and experiment classical algorithms. Such infrastructure
should be easy to use and highly modular to allow programmers
to develop new algorithms without being required to understand
details of the underlying library code. However, such modular-
ity should come without compromising the software performance.
This paper presents Ophidian: an open-source library for physical
design research and teaching. Ophidian aims to provide a basic
infrastructure to develop algorithms for di�erent physical design
automation steps, while providing simple implementations of clas-
sical algorithms in order to help students understand the physical
design �ow. In addition, Ophidian makes use of modern software
engineering design patterns to allow the development of programs
with short runtimes while providing high code modularity. To high-
light the bene�ts of using Ophidian, we implemented a software
prototype that executes the A* algorithm for each interconnection
segment of a circuit. The experimental results showed that the pro-
totype requires 30% shorter runtime when compared to a traditional
Object-Oriented implementation.

1 INTRODUCTION
Developing and prototyping new physical design automation algo-
rithms, or even reproducing an existing one is an arduous work.
The programmer must not only develop the algorithm itself, but
also implement the necessary parsers and data structures to handle
circuit data. Therefore, it is important that students and researchers
working on physical design automation could have access to open-
source code to quickly and easily build the surrounding infrastruc-
ture, thus dedicating most of their time and e�ort to achieve higher
contributions in solving the target problem itself.

There are already some initiatives towards open-source tools for
di�erent physical design steps, such as timing [8], placement [3]
and routing [4, 11]. However, all those tools are devoted to spe-
ci�c steps of the design �ow and their integration in a complete
�ow does not seem evident. As consequence, while it is possible to
use them for research, their applicability for teaching purposes is
quite restricted. The reason is that those tools implement very e�-
cient, but sophisticated algorithms and techniques that are di�cult
for novice students to understand. Indeed, for didactic purposes
classical algorithms are simpler and thus easier to understand.

On the other hand, Rsyn is an open-source library that aims to
help the research on physical design algorithms [6]. Rsyn provides
a basic infrastructure to develop algorithms for di�erent physical
design automation steps, and supports the benchmarks of recent
contests, such as the ICCAD 2015 [10] and ISPD 2018 CAD Con-
tests [12]. While Rsyn provides a generic infrastructure to develop
physical design algorithms, it is focused on research and it is still
under development.

The development of an open-source library imposes some re-
strictions that may not be necessary when developing stand alone
tools and/or algorithms. Since a library is designed to be used by
many di�erent people, it is essential that it is highly modular, and
can be easily extended [13]. In addition, the library core functions
must have good performance, so that their runtime does not impact
on the whole application runtime.

Therefore, in this paper we present Ophidian: an Open-Source
Library for Physical Design Research and Teaching [7]. Ophidian is
based on modern software engineering design patterns and open-
source tools in order to provide a modular and easy to use library
for physical design research and teaching. The features of Ophidian
include:

• Support to industry �le formats, such as DEF, LEF and
Verilog.

• Support to benchmarks of recent contests, such as ICCAD
2015 and 2017 CAD Contests, as well as ISPD 2018 CAD
Contest.

• Usage of modern software engineering design patterns,
such as Data-Oriented Design (DOD) and Entity-Component
System. Section 3 presents an overview of such design pat-
terns.

• Usage of data structures that provide higher cache locality
for the program. As consequence, applications developed
using Ophidian may achieve shorter runtime, as presented
in Section 4.

• Usage of unit testing and continuous integration [5], to
improve maintainability and ensure that it builds and runs
on modern operating systems.

• Ophidian is fully open-source, with the source code avail-
able on Gitlab [1].

The remaining sections of this paper are organized as follows:
Section 2 presents an overview of the Ophidian library, showing
an example of how to implement an application using Ophidian.

WOSET, November 2018, San Diego, CA Ne�o et al.

Section 3 shows how Ophidian makes use of modern software engi-
neering design patterns. Section 4 shows an use case of a physical
design application to illustrate how the usage of modern design
patterns may improve the performance of a program, while Section
5 draws the conclusions and presents the next development steps
of Ophidian.

2 LIBRARY OVERVIEW
Figure 1 shows an overview of the Ophidian library. The library is
divided into modules, where each module encapsulates di�erent
information from the circuit. For example, the netlist module en-
capsulates the cells, pins and nets information. Given the netlist
class, the user can know which pins belong to each cell, and which
nets are connected to those pins. The placement module, in its turn,
encapsulates the information on cell geometries and their locations.
This way, developers can use only the modules that are necessary
for the application they are building. However, instantiating sev-
eral classes (one for each module) may also be a nuisance to the
developer. To circumvent this di�culty, Ophidian encapsulates all
those classes in a single Design class, which acts like a shell to all
the other classes. This way, developers only need to instantiate a
single class (Design), and can make use of the necessary modules.

timing

Timing Graph
Critical Paths
Slacks, Arrival & Required Times
Slews & Delays
Library
Timing Lookup Tables

standard cell
Standard Cells
Pins
Pin-Cell Assignment
Pin Directions

netlist
Cells
Pins
Nets
Cell-Pins Assignment
Pins-Net Assignment

Cell-Standard Cell Assignment

placement

Cell Geometries
Cell Placement
Pin/Pad Placement

Library

interconnection

RC Tree

algorithms
FLUTE

parsing
Verilog
DEF
LEF
Liberty

Design

floorplan
Standard Cell Rows
Standard Cell Sites

Figure 1: Overview of the current modules of Ophidian.

The Design class should be able to handle di�erent benchmarks
while keeping this transparent to the developer. Ophidian does
this through the factory design pattern [16]. This design pattern
consists on a generic class (i.e. Design class) which can be built
through di�erent ways. Then, a factory class/module provides a
set of functions to build this generic class. In the case of Ophidian,
the library provides functions to build the Design given di�erent
benchmarks. For example, the developer can build a Design from
.DEF, .LEF and .Verilog �les (as it was the case of the ICCAD 2015
Contest), or only from .DEF and .LEF �les (as in the case of the
ICCAD 2017 Contest). In the end, the developer has access to the
Design object without being required to know how to build it.

Finally, there are two ways of using Ophidian: developers can
use it only as an external library to build their own algorithms, or

they can change Ophidian code themselves, since the library is fully
open-source. For those that wish to use it only as an external library,
Ophidian provides a project template in a separate repository [2].
This project template shows how to use the library inside another
application, which is useful for teaching. For instance, in a physical
design automation course students would be able to develop a
single algorithm without being required to understand the library
implementation: they only need understand how to use the library
interface.

3 IMPLEMENTATION OVERVIEW
In order to provide the modularity described in Section 2 without
compromising the program performance, we make use of the data-
oriented design (DOD) programming model. Unlike object-oriented
design (OOD), which focuses on how to represent the problem with
objects, DOD focuses on how data is organized in memory. To
illustrate the di�erence between those two programming models,
suppose we want to build a program to solve a given physical
design problem which requires modeling nets and pins. Figure 2
shows a possible class hierarchy using OOD for such purpose. In
this hierarchy, the program will have a set of Net objects, where
each object has a name and a reference to all its pins. Each Pin is
also an object by itself, with a name and a reference to the net it
belongs to. If it is necessary to know the pin position as well, there
is a specialization of the Pin class that includes a position attribute.

Netlist::Net

+ Name
+ Pins

Placement::Pin

+ Position

Netlist::Pin

+ Name
+ Net

Figure 2: Class diagram representing a physical design prob-
lem with OOD approach. The diamond-end arrow between
pin and net classes represents an aggregation relationship
between two classes. The triangle-end arrow between the
two pin classes represents a specialization relationship.

Notice that, while this class hierarchy is very simple, real world
applications may require signi�cantly more complex class hierar-
chies, which hampers the development of e�cient programs. One
way of avoiding overly complex class hierarchies is making use
of the DOD programming model, as depicted by Figure 3. In this
programming model the Net objects are replaced by an array of
Net indices. Those indices are then used to access the attributes of
the nets, which are also stored in independent arrays. For exam-
ple, in Figure 3 there is one array for the nets, and two arrays for
their attributes (names and pins). The same applies for the Pins.
Therefore, if the developer needs to add another attribute to a given
class she/he need not create a new class specialization. It is only
necessary to add an extra array with this attribute, thus avoiding
complex hierarchies. In addition to the higher modularity, the DOD
programming model also improves the program cache locality, since
under in this model data is stored in a contiguous array. A more
detailed discussion on how the DOD programming model exploits
cache locality to reduce memory access and speed up programs are
found in [7].

Ophidian: an Open-Source Library for Physical Design Research and Teaching WOSET, November 2018, San Diego, CA

0 1 2 3

0

3

1

2

4

5

6

7

Nets:

Net Pins:

50

90

0 3 50 90 ...

...(1, 2) (4, 1) (3, 3) (5, 6)

......

......

Pins:

Pins Position:

90

1 2

Figure 3: Representation of a physical design problem with
the DOD approach. The lines represent arrays to describe
nets and pins properties.

However, using DOD programming model may not be trivial for
the developer. That is why we use the entity-component system to
provide an easy-to-use DOD infrastructure inside Ophidian. This
design pattern consists in decomposing a problem into sets of enti-
ties and components (also called properties). The entities are similar
to the objects in OOD, except that each entity is simply a unique
identi�er. Then, this identi�er is used to access all its properties,
which are stored in separate arrays.

The mere availability of entities and properties does not simplify
the development process itself. Therefore, Ophidian provides an
entity system which is capable of creating and removing entities,
as well as retrieving their properties. All those operations have
constant time complexity and hence do not have a large impact
on the program performance. As consequence, the developer can
use those entities in a similar way that she/he would do it in an
OOD program, except that the entities would be stored in a DOD
fashion.

4 EVALUATION ON A USE CASE
The DOD programming model is one of the most relevant features
of Ophidian. In order to evaluate its impact on program perfor-
mance, we evaluated the library on the implementation of the A*
algorithm [14] for global routing [9], which is a typical graph al-
gorithm. Since a circuit may be modeled as a set of cells, pins and
interconnections, many physical design problems may be solved
using graph algorithms. Therefore, the results obtained on this case
study may be similar on other physical design problems. In order to
�nd the global routing of each circuit interconnection, each inter-
connect belonging to the circuit was decomposed into a steiner tree.
Then, the A* algorithm was used to map each steiner tree segment
to a set of G-cells of the circuit.

We generated experimental results for the 8 circuits available
from the ICCAD 2015 Contest (problem C: Incremental Timing-
Driven Placement) [10]. These circuits were derived from industrial
designs having from 768k to 1.93M cells. We performed all experi-
ments in a Linux workstation with an Intel® Core® i5-4460 CPU
running at 3.20 GHz, 32GB RAM (4 × 8GB DDR3 at 1600MHz), and
three levels of cache. All results presented in this section represent
the average of 30 executions to ensure a small con�dence interval.

Before presenting the results, it is important to explain the dif-
ferences between the OOD and DOD implementations of the A*
algorithm. Since we are using this algorithm for global routing,
there is a need to model nets and pins in both programs. For that
purpose, we used the same structure presented in Section 3 for

modeling nets and pins. In addition, since this is a graph algorithm,
we also need to model the graph itself. Figures 4 and 5 show how
we modeled the graph using OOD and DOD, respectively. When
using OOD, each node is represented by an object, which contains
four attributes: CameFrom, G_score , F_score and Edдes . All those
attributes are used by the A* algorithm to identify the shortest
path between two nodes in the graph. Each edge is also an object,
which contains references to the source and target nodes, as well
as a capacity and weight, used by the A* algorithm. On the other
hand, when using DOD the nodes and edges are represented only
by their indices, as in Figure 5. Their attributes are the same as in
the OOD version, but they are all stored in separate arrays, which
are indexed using the node and edge indices.

Graph::Node

+ CameFrom
+ G_score
+ F_score
+ Edges

Graph::Edge

+ Source
+ Target
+ Capacity
+ Weight

Figure 4: Class diagram for graph representation using OOD
programming model.

Nodes:

G_score:

F_score:

CameFrom:

Node_Edges:

...

...

0 1 2 3 4 ...

...

...

...

4 ...10 8 7 25

44

55

57

68

89

100

101

113

95

106

108

119

5

16

18

29

2

13

15

26

9 10 17 9 11

17 18 18 17 19

Source:

Target:

Edges:

Weight:

Capacity:

0 1 2 3 4 ...

1 ...

...

111 1

27 2 44 63 7

1962321428

Figure 5: Graph representation using DOD programming
model.

Figure 6 shows the number of cache misses (y axis) of each
implementation of the A* algorithm for each circuit (x axis, sorted
in ascending order of number of cells). We measured the number of
cache misses of all levels of cache (both instructions and data caches)
using the PAPI tool [15]. The OOD implementation resulted in 1.33
billion of cache misses, on average, while the DOD implementation
resulted in 0.62 billion of cache misses, on average (almost 53%
less cache misses than OOD). This reduction on number of cache
misses relies largely on the DOD implementation of the graph data
structure, since the graph is traversed multiple times in order to
route all the circuit nets. In addition, observe that the circuit with
highest number of cache misses was superblue10, which is not
the circuit with highest number of cells. This happens because
superblue10 is the circuit with the highest area and consequently,
more nodes in the graph.

WOSET, November 2018, San Diego, CA Ne�o et al.

0.62

Average

#
 c

a
ch

e
 m

is
se

s
(b

ill
io

n
s)

Figure 6: Number of cache misses (y axis) of A* for each
circuit evaluated (x axis). The orange bars represent cache
misses for OOD implementation, the blue bars show cache
misses for DOD implementation.

The lower number of cache misses achieved by the DOD imple-
mentation directly impacts on its runtime as well. Figure 7 shows
the runtime results of each implementation. As it can be seen, the
OOD implementation took on average 20s to route all net seg-
ments, while the DOD required only 14s on average to do so (30%
faster than OOD). Such results show that the lower number of
cache misses achieved by using DOD successfully reduces the run-
time of the application. This improvement, combined with the
entity-component system presented in Section 3, allows Ophidian
to provide a modular and fast library to develop physical design
applications.

Average

R
u
n
ti

m
e
 (

s)

Figure 7: Runtime (y axis) in seconds of A* for each circuit
evaluated (x axis).

5 CONCLUSION AND NEXT STEPS
We presented Ophidian, an open-source physical design library
for research and teaching. The library aims to provide a modular

interface to develop both state-of-the-art and classical physical
design algorithms, through separate modules for each physical
design step and support to benchmarks of recent physical design
competitions.

In addition, Ophidian provides modularity while exploring the
inherent cache locality of some physical design problems, through
the use of DOD and the entity-component system design pattern.
As consequence, programs developed using Ophidian can achieve
a lower number of cache misses which helps improve performance.

Currently, Ophidian contains modules for handling standard
cells, �oorplan, netlist, placement and interconnections. As next
steps, we intend to support other physical design steps, such as
clock tree synthesis and routing, including traditional algorithms
for each physical design step. This way, it is easier for researchers to
develop algorithms for a single step, while they can rely on Ophidian
infrastructure to implement the remaining steps. In addition, we
intend to provide a script interface, so that the library can be easily
used along other physical design tools.

REFERENCES
[1] Embedded Computing Lab, Federal University of Santa Catarina, “Ophidian:

an Open Source Library for Physical Design Research and Teaching”. https:
//gitlab.com/eclufsc/eda/ophidian. (2018).

[2] Embedded Computing Lab, Federal University of Santa Catarina, “Ophidian
project template”. https://gitlab.com/eclufsc/eda/ophidian_project_template.
(2018).

[3] Chung-Kuan Cheng, Andrew B Kahng, Ilgweon Kang, and Lutong Wang. Re-
PlAce: Advancing Solution Quality and Routability Validation in Global Place-
ment. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (2018).

[4] Ke-Ren Dai, Wen-Hao Liu, and Yih-Lang Li. NCTU-GR: E�cient simulated
evolution-based rerouting and congestion-relaxed layer assignment on 3-D global
routing. IEEE Transactions on very large scale integration (VLSI) systems 20, 3
(2012), 459–472.

[5] Paul M Duvall, Steve Matyas, and Andrew Glover. 2007. Continuous integration:
improving software quality and reducing risk. Pearson Education.

[6] Guilherme Flach, Mateus Fogaça, Jucemar Monteiro, Marcelo Johann, and Ricardo
Reis. 2017. Rsyn: An Extensible Physical Synthesis Framework. In Proceedings of
the 2017 ACM on International Symposium on Physical Design (ISPD ’17). ACM,
New York, NY, USA, 33–40.

[7] Tiago Fontana, Renan Netto, Vinicius Livramento, Chrystian Guth, Sheiny
Almeida, Laércio Pilla, and José Luís Güntzel. 2017. How Game Engines Can
Inspire EDA Tools Development: A use case for an open-source physical design
library. In Proceedings of the 2017 ACM on International Symposium on Physical
Design. ACM, 25–31.

[8] Tsung-Wei Huang and Martin DF Wong. 2015. Opentimer: A high-performance
timing analysis tool. In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design. IEEE Press, 895–902.

[9] Andrew B Kahng, Jens Lienig, Igor L Markov, and Jin Hu. 2011. VLSI physical
design: from graph partitioning to timing closure. Springer Science & Business
Media.

[10] M. Kim, J. Hu, J. Li, and N. Viswanathan. 2015. ICCAD-2015 CAD contest in
incremental timing-driven placement and benchmark suite. In ICCAD. 921–926.

[11] Wen-Hao Liu, Wei-Chun Kao, Yih-Lang Li, and Kai-Yuan Chao. NCTU-GR 2.0:
Multithreaded collision-aware global routing with bounded-length maze routing.
IEEE Transactions on computer-aided design of integrated circuits and systems 32,
5 (2013), 709–722.

[12] Stefanus Mantik, Gracieli Posser, Wing-Kai Chow, Yixiao Ding, and Wen-Hao Liu.
2018. ISPD 2018 Initial Detailed Routing Contest and Benchmarks. In Proceedings
of the 2018 International Symposium on Physical Design. ACM, 140–143.

[13] Tim O’Reilly. Lessons from open-source software development. Commun. ACM
42, 4 (1999), 32–37.

[14] Stuart J Russell and Peter Norvig. 2009. Arti�cial intelligence: a modern approach.
Pearson Education.

[15] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. 2010. Collecting
performance data with PAPI-C. In Tools for High Performance Computing 2009.
Springer, 157–173.

[16] Pree Wolfgang. Design patterns for object-oriented software development. Read-
ing Mass 15 (1994).

https://gitlab.com/eclufsc/eda/ophidian
https://gitlab.com/eclufsc/eda/ophidian
https://gitlab.com/eclufsc/eda/ophidian_project_template

	Abstract
	1 Introduction
	2 Library Overview
	3 Implementation Overview
	4 Evaluation on a use case
	5 Conclusion and Next Steps
	References

