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Abstract—Typically academic physical synthesis algorithms
are developed to optimize a particular feature of the circuits.
Usually, they are strongly intertwined with the infrastructure
and support only the required circuit data. This approach
severely restricts integration and extensibility among physical
synthesis algorithms. To tackle that problem, we developed the
Rsyn framework. It is a modular and extensible platform which
provides the required infrastructure for a wide-range of physical
synthesis problems. Thus, new features may be easily integrated
making Rsyn increasingly valuable as a framework to leverage
research. Besides, standard and third party components can be
mixed via code or script language to create a comprehensive
design flow, which can be used to improve the research impact
and results. Sharing and reusability of common components are
also one of the main contributions of the Rsyn framework. The
netlist data model uses the new features of C++11 providing an
easy and efficient way to traverse and modify the netlist. User-
defined attributes may be easily mapped to the netlist elements. A
notification system alerts components about changes in the netlist
elements. The flexibility of the implemented netlist inspired the
name Rsyn, which comes from the word resynthesis. Our platform
allows researchers and students to focus on the key concepts of
the algorithms instead of spending a significant amount of time
implementing the required infrastructure. Rsyn is also a valuable
environment to teach and learn physical synthesis algorithms. We
have successfully used Rsyn platform in several projects including
the 2015 ICCAD and 2018 ISPD contests.
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I. INTRODUCTION

Modern system-on-chips benefit from technology scaling
by integrating several functional blocks composed by hun-
dreds of millions transistors in a single die. This comes
with the cost of affording an ever-increasing number of tool
licenses, teams of engineers, enablements and servers [5].
Moreover, the design flows available in EDA vendor tools
do not completely benefit from the technology scaling due
to the known suboptimal-nature of the heuristics composing
the underlying optimization engines. The use of the modern
and powerful machine learning techniques has been explored
in recent works targeting a higher flow predictability [5] and
therefore reducing the number of design iterations and cost. A
higher predictability also helps achieve better outcomes. This
shows a brand-new scope of research possibilities but on the
other hand raises the question: “How can academic research
groups conduct their research on modern industrial challenges
with limit access to technology, such as PDKs and open-source
libraries and frameworks?”

Traditional conferences, such as ISPD [8][12][9][10], IC-
CAD [13][6][7] and TAU [11] [1] [2], hold programming
contests for problems faced by the industry. Small teams of
students are asked to propose solutions in a very tight schedule
of few months. The contests are organized in collaboration
with major industry companies, such as Synopsys, Cadence,
Mentor, Xilinx, Intel and IBM. The industry provides a well-
formed statement of the problem being addressed, testcases

(benchmarks) and evaluation methodology. It has been ob-
served an increase in the number of researches and publications
on the contest-related topics in the years that follow the
contests. However, the contest benchmarks usually suffer from
obfuscations to hide the original design functionalities, clock
structure, etc. These obfuscations can misguide the optimiza-
tion and raise questions about the actual applicability of the
research. More recently, a cooperation between ARM and the
Arizona State University resulted in the open ASAP7 7nm
predictive PDK [17], allowing academia to conduct research
in a virtual 7nm environment. To develop optimization tools for
either contests or predictive PDKs researchers still implement
their own data structures, which takes huge portion of their
time that could be spent on algorithm development. The
data structures in these cases are commonly designed for
performance and support only the information necessary for
the optimization being developed. They lack extensibility and
interoperability, which discourages the reuse of the code. We
believe academia and industry can benefit from open-source,
collaborative and comprehensive frameworks, data models and
parsers1.

ABC [16] is a traditional environment for logic syn-
thesis that comprehends the qualities aforementioned. Many
researchers develop their projects using ABC environment due
to its comprehensive API and the many embedded algorithms
and utilities. ABC is also known to be used in industrial tools.
There are open-source physical design tools [34] [19] [32],
but they do not share a common data model or API and
their interoperability in these conditions is very likely to
be implemented using scripts, which is an inefficient and
restrictive solution. The physical design community lacks an
environment such as ABC that provides a common API and
data model and works as an integration tool.

We present Rsyn, an open-source framework for physical
design research. Rsyn implements an elegant and extensible
data model and a intuitive and user friendly API. We provide
a set of ready-to-use utilities (e.g. routing prediction, parasitic
extraction and timing analysis) for fast prototype of ideas.
The framework provides a collaborative environment that can
leverage integration of tools. For instance, an analytic placer
and a timer can be integrated to implement a timing-driven
placement. Rsyn is available for download on GitHub [26]
under Apache License. We summarize the qualities of Rsyn
as follows:

• An elegant and user-friendly data model and API
implemented using the modern features of C++11;

• A robust callback system for netlist and layout-related
events;

• Support for user-defined attributes (extensibility);
• Timing and parasitic extraction APIs;
• A powerful graphical user interface with support for

user-defined overlays;

1Refer to Section II for a small review of open source EDA tools.



• Parsers for academic and industrial file formats, such
as Bookshelf, Verilog, LEF/DEF, SDC and SPEF.

The remainder of this paper is organized as follows: Section
II presents an overview of the existing open-source EDA tools
and flows. Section III introduces the elements composing Rsyn
framework and how developers can extend the framework with
their own functionalities. Section IV discusses the standard
components of Rsyn. Finally, Section V give conclusions and
directions for future work.

II. RELATED WORKS

In EDA community, ABC [16] from Berkley University is
one of the most successful and traditional open source projects.
ABC is an environment for logic synthesis and verification. It
provides a user-friendly and flexible data structure. ABC is
a consolidated project which supports different applications.
Several state-of-art algorithms are developed in the ABC
environment. It supports several industrial and academic file
formats.

Yosys [25] is an open source RTL synthesis tools. It
synthesizes RTL to both ASIC or FPGA. Logic minimization
and technology mapping are performed by ABC which is
integrated in Yosys synthesis flow. Yosys is licensed under
Internet Systems Consortium license [21]. The project is
available at GitHub.

OpenTimer [3] is an open-source STA tool. OpenTimer
has won three awards in TAU contests [1][2]. The tool has
a scheduler to perfom parallel STA tasks. The scheduler
aids to improve runtime up to ten times compared to other
academic tools. OpenTimer has features to remove common
path pessimism and a fast incremental timing analysis. It is an
accurate and fast academic tool. OpenTimer may be integrated
into Rsyn. Its source code is available at GitHub.

Parsing tools play a major role in optimization development
once they define the interoperability among the optimization
engines and commercial flows. Although Verilog [27] is the
most common netlist exchange format, only a few open-
source parsers exist. We highlight Icarus Verilog [20] and Ben
Marshall’s Verilog parser [15], both with limited support for
the language syntax. For timing budgeting and constraints Syn-
opsys provides an open-source SDC parser [36] and for phys-
ical synthesis Cadence provides LEF and DEF parsers [28].
OpenAcess [29] is a database that supports interoperability
with commercial flows and includes a comprehensive set of
parsers. However, the coalition responsible for maintening
OpenAcess decided to restrict code the availability to a few
paying members.

Qflow [31] is a free open-source RTL to GSDII flow.
It comprises many underlying tools, which are also open-
source. Qflow relies on Yosis to perform synthesizable Verilog
to gate-level netlist synthesis. The back end of the flow is
made with the classical annealing-based GrayWolf [19] placer
and Qrouter [32] routing tool. Qflow enables the designs
of circuits with relaxed constraints for those who cannot
afford commercial flows. The authors claim the existence
of successful tapeouts using Qflow. However, Qflow does
not rely on any common infrastructure or database to run
its tools and the trend is that boundaries among engines in
EDA flows are becoming blurrier. The recent white-paper
of Synopsys Fusion Technology [35] shows the importance
of implementing flows with a single data model for logical
and physical optimization and to exchange engines between
synthesis, physical implementation and sign-off. We believe
Rsyn can be the driver of such view in the open-source EDA.
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Fig. 1. Anatomy of Rsyn framework

III. ANATOMY OF RSYN FRAMEWORK

The Rsyn framework comprises a session, data model,
services, processes and a graphical user interface (GUI).
Figure 1 depicts an overview of the framework and how its
elements are related. The session is the hub to use the Rsyn
framework from which all the components of the framework
can be accessed. The data model describes the design in its
logical (netlist) and physical implementation (layout) and is
the backbone of the framework on top of which services and
processes are written. Services and processes both are used
to perform analysis and optimization on the designs. In this
section, we provide an overview of how the netlist is modeled
in the framework data model. We also describe how tools can
be implemented as services and processes in Rsyn. Finally, we
present a powerful graphical user interface (GUI) that can be
used to visualize the circuit layout and help on development
of new algorithms.

A. Netlist Data Model

It is crucial for the framework to provide a high-quality
modeling of the netlist once it holds the basic information to be
consumed and modified by of optimization tools. Rsyn models
the netlist as a direct graph in which pins are the nodes and
arcs are the hyperedges, as depicted in Figure 2. There are two
types of arcs: net arcs and cell arcs. Net arcs connect drivers to
sinks of nets and cell arcs connect input pins to output pins of
the cells. An object called design manages the netlist, which
is divided into modules. Modules contain instances that can
be cells, ports or other modules. Objects named library cells,
library pins and library arcs store the information of cells,
pins and arcs from a same implementation. Optimizations can
define callbacks to cope with incremental modifications on the
netlist. For instance, if a sizing tool implements its own circuit
representation, it can define callbacks to update the main data
model each time a cell has the size changed or threshold
voltage is switched. This allows to keep the framework and
possibly other tools, such as the timer, up-to-date. Another
powerful feature our netlist data model is the extensibility.
Users can define their own attributes for the objects to store
additional information on-the-fly.

In Listing 1, a snippet code of Rsyn with user defined
attribute is depicted. In Line 1, a new integer attribute called
data for pins is created. All the nets of the circuit are traversed
in topological order (Line 2). All sink pins of the net are
transversed (Line 3). Finally, in Line 4, a method foo is called
and the foo’s result is stored in the attribute’s associated to
pin.
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Listing 1. RSYN CODE EXAMPLE

1 Rsyn::Attribute<Rsyn::Pin, int> data = design.
createAttribute();

2 for (Rsyn::Net net : module.
allNetsInTopologicalOrder()) {

3 for (Rsyn::Pin pin : net.allPins(Rsyn::SINK)) {
4 data[pin] = foo(net);
5 } // end for
6 } // end for

B. Services and Processes

Rsyn is primarily designed to work as a framework,
meaning users develop their optimization and analysis engines
and integrate (register) them as new functionalities for the
framework. In Rsyn, the users can register their engine as a
process or a service in the session. Processes are engines that
perform optimization, such as placement, clock-tree synthesis
and routing implement well-defined algorithms that modify
the netlist or the layout and will be called a limited number
of times in the optimization flow. Every time a process is
called, a new object is created and destroyed after its execution.
Engines such as timing analysis tools and density maps are
expected to be called several times inside other engines and
their information updated incrementally. We calls these engines
services. Once a service is started, it will remain available for
other services and process until explicitly stopped.

C. Script

Once processes and services are registered in the frame-
work they become available to be called using Rsyn com-
mands. The commands in Rsyn follow the GNU/Linux syntax,
defined as:

<command> [<value> ...] [-<param> <value> ...]

where <command> and <parm> are alphanumeric iden-
tifiers and <value> may assume string, numeric or Json [23]
values. Rsyn scripts are composed of a set of commands that
defines the user execution flow and do not present support
for loops of functions to preserve the execution flow simple.
The script uses Json syntax to transmite processes and services
input parameters due to Json’s readability and flexibility

In Listing 2, we present a snippet of Rsyn script. In Line
1, a service called densityMap is started with the parameters
numCols equals to 50 and numRows equals to 60. Line 2-5
runs a process called incrementalPlacement with parameters
effort equals to 5 and target equals to density. Line 6 calls

Listing 2. RSYN SCRIPT EXAMPLE

1 start "densityMap" {"numCols": 50, "numRows": 60};
2 run "incrementalPlacement" {
3 "effort" : 5,
4 "target" : "density"
5 };
6 reportDensityMap "report.txt" -verbose true;

Fig. 3. Graphical User Interface of Rsyn

a command called reportDensityMap followed by string pa-
rameter report.txt and the boolean parameter verbose equals
to true.

D. Graphical User Interface (GUI)

A GUI may have many practical applications. In Rsyn,
our primary goal is to enable the visualization of the layout
produced by optimization engines and therefore make easier
to assert whether the algorithms are behaving as expected.
However, we also provide tools to add new information in
the GUI so algorithmic-specific information can be drawn
(E.g. users can easily change the colors of the instances to
represent the clusters produced by a clustering engine or draw
arrows to depict the displacement of a legalization engine).
We use Qt [33], which is a well-known cross-platform for
development of desktop applications, as the backbone of Rsyn
GUI. The many embedded features in Qt and its extensive
online documentation makes of our GUI a powerful tool.

Figure 3 presents an overview of Rsyn GUI. Most of the
window area is dedicated to the canvas where the layout and
other information are drawn. The drawing is a task performed
by a set of overlays, which makes our GUI modular and
extensible. For example, the instances, rows, ports, pins, wires
and vias are drawn by the layout overlay and users may
implement their own overlays so new information can be added
to the canvas. A menu in the right lists all overlays and allows
to show and hide the drawing of a specific overlay. The users
can rely on the top menu to find helpful features, such as
run script, zoom and snapshot and in the bottom we provide
an interactive console similar to the ones present in EDA
commercial tools.

IV. STANDARD COMPONENTS

A. Physical Design

In Rsyn framework, Physical Design is the environment
to store and manage layout data. It provides a user-friendly
and intuitive API to access layout data of the physical objects.
Physical design is composed of several physical elements to
cope with specific layout data. Each physical design element



has its API. Physical Design handles physical elements defined
in the technology library, the physical elements which are
extension from logic elements, and physical objects which are
present only in the layout design.

The technology library elements have the predefined layout
which can be instantiated in design core. Therefore, physical
synthesis algorithms can access and reference them while
optimizing the design. The technology library elements provide
guide and restrictions for the algorithms. For instance, routing
algorithms can rely on library layers to compute paths to
connect net’s pins. The typical physical library elements are
library cells, sites, vias, layers, and so forth.

The layout data of logic elements are stored and managed
by physical objects. These objects are mapped to the respective
logic objects. In the mapped physical objects, cell positions,
ports/pins layout data, net topologies and so forth are stored
and managed. In the Physical Design API, the reference to
the logic objects is required to access the respective physical
objects.

Several physical objects are defined to aid physical synthe-
sis algorithms. They are only present in the physical design.
These structures are regions, rows, routing grid, and so forth.
For some of them, e.g., rows, an attribute API is available.
Users can map with physical attribute their data to the physical
objects. This map infrastructure is similar to the one present
in the logic netlist.

In Physical Design, a notification system is provided. Users
can register their functions to be called when the interested
physical element is modified. Physical Design environment
is developed in C++11 with the proxy design pattern. The
environment is continuously extended to provide required fea-
tures for new research projects. Recently, the detailed routing
support has been added to the physical design. Therefore, Rsyn
supports circuit with already routed nets. It also enables users
to implement their detailed routing algorithms.

B. Parsers

The Rsyn framework has integrated several parsers to
academic and industrial file formats. An intuitive and user-
friendly API provides the mechanism to parse circuit files.
Rsyn has integrated parsers for LEF/DEF, Verilog, Liberty,
SDC and SPEF formats. Parsers for the bookshelf and some
contest (e.g., ISPD 18) formats are also available. The required
parsers are automatically called when the circuit load flows is
executed.

C. Utilities

Rsyn utilities are a set of basic and shareable resources.
The objective of utility elements is to abstract and encapsulate
simple and common features and operations. The simple
example is the rectangle shape. It can be used in cells, pins,
core, and so forth. Basically, in all the circuit elements, the data
and requires operations related to the element’s boundaries are
similar. Therefore, the common operations are encapsulated
in an element which can be used in several distinct places.
The utilities also may be used as method’s attributes to pass
complex data to functions. In Rsyn, the most used utilities
are customized runtime profile watches, execution logger, float
pointer comparators, polygons, rectangles, Cartesian points,
and so forth.

V. CONCLUSION

In this paper, the Rsyn framework is presented. Rsyn is
an open-source, versatile, extensible and modular physical

synthesis platform. Rsyn provides the required infrastruc-
ture to researchers implement their optimization algorithms.
The infrastructure is composed by academic and industrial
parsers, netlist graph, timer, routing estimator, Graphics User
Interface, and so forth. Researchers can dedicate their time
to develop optimization algorithm instead to implement the
required infrastructure. Moreover, they can use third party
algorithms to provide some features for their projects. These
algorithms can be easily integrated in Rsyn by using service
or process features. The platform minimizes the fragmentation
and improves the integration of physical synthesis algorithms.
Rsyn platform is a friendly environment to teach, learnand
research physical synthesis algorithms. We have successfully
used Rsyn platform in several projects including the 2015
ICCAD and 2018 ISPD contests.
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