
ARL:UT’s Experiences in the Free Open-Source VLSI EDA
Landscape

Russell Friesenhahn
The Applied Research Laboratories

10000 Burnet Rd
Austin, Texas 78758

russellf@arlut.utexas.edu

Johnathan York
The Applied Research Laboratories

10000 Burnet Rd
Austin, Texas 78758

york@arlut.utexas.edu

ABSTRACT
Historically at ARL:UT, we have almost exclusively developed digi-
tal applications on commercially available CPUs and FPGAs. How-
ever, our evolving application set demands higher performance with
lower Size, Weight, and Power (SWaP) than commercially available
CPUs or FPGAs provide. This has driven us to ASIC design. We
have noticed that fabrication costs of "obsolete" technology nodes
have fallen, yet the cost of commercial EDA tools remains agnostic
of the targeted technology node. This has pushed us to explore
the Free and Open-Source (FOSS) VLSI EDA tools. We will discuss
our experiences in using and collaborating with the design �ow
provided by Q�ow, which works well for the intended design space.
We then present our thoughts on what would bene�t the FOSS VLSI
EDA community, and why we believe the development tools we
choose should be as FOSS as possible.

1 INTRODUCTION
Applied Research Laboratories, The University of Texas at Austin
(ARL:UT) is a University-A�liated Research Center (UARC) that has
performed research and development for United States Government
sponsors since 1945 [7]. Historically, we have almost exclusively
developed digital applications on commercially available CPUs and
FPGAs. However, our evolving application set demands higher
performance with lower Size, Weight, and Power (SWaP) than is
available in either commercially available CPUs or FPGAs. This has
led us to explore ASIC design options.

We have noticed that while Moore’s Law marches on to single
digit nm feature sizes, the �nancial barriers to entry of "obsolete"
technology nodes have fallen providing researchers, startups, and
hobbyists unprecedented access. However, total cost of ownership
for commercial electronic design automation (EDA) tools remains
agnostic of the targeted technology node. Thus while access to
fabrication is a�ordable, access to design is not. This has pushed us
to explore the Free and Open-Source (FOSS) VLSI EDA tools.

As both a University and as a UARC, ARL:UT is chartered to
serve the public interest, and so the use of and contribution to FOSS
tools open to all is a natural course for us. If we believe a tool is
not working as expected, we dig into the source to �nd and �x the
problem. Our belief in FOSS is seen in our use of Linux, Python,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WOSET 2018, San Diego, CA
© 2018 Copyright held by the owner/author(s).

NumPy, SciPy, KiCad, Icarus Verilog, and in our long history of
contributions back to the community, among them the GPS Toolkit
[9] [4] and Ganymede [6] [3].

Using internal R&D funds, we have spent the previous two years
working with the FOSS VLSI EDA ecosystem automated by Q�ow.
We will discuss our experiences with Q�ow and related tools and
our contribution to the e�ort. We then present our thoughts on
what would bene�t the FOSS VLSI EDA community and why we
believe the development tools we choose should be as FOSS as
possible.

2 THE QFLOW ECOSYSTEM
After evaluating the available FOSS VLSI EDA tools, we selected
Q�ow because the �ow receives heavy development to expand the
feature set, maintainers of several of the tools are active in multiple
forums and platforms and open to community collaboration, the
�ow uses standard �le formats whenever possible, and we found
it incredibly quick and easy to stand-up the tools and execute the
RTL to GDSII process on a small circuit.

Q�ow mostly automates a textbook design �ow of taking an
RTL design to physical GDSII output. Table 1 lists the tool that
implements each design �ow process. OpenRAM provides an SRAM
memory compiler capability and is included in this list even though
it is not used in Q�ow because of the criticality of this feature. We
argue without this, a large set of designs would be unrealizable.

Many of the individual tools have some idiosyncrasies, but, in
reality, each tool is typically the only option if a fully automated
�ow is desired. For this reason, we will provide evaluation of the
tools as a suite.

2.1 Q�ow E�cacy
Most of the tools were originally developed individually, some
decades in time apart, and for a particular function or project with-
out the present design �ow in mind. However, since the tools are
FOSS and naturally use openly de�ned �le formats or industry-
standard �le formats, the tools interact with each other without
issue. And where one tool provides an output format that the next
tool in the process chain does not natively accept as an input, Q�ow
provides a glue script for translation.

Overall, the design �ow works excellently, especially when using
the �ow as the Q�ow commands use it. A designer can easily and
reliably take a Verilog RTL design, run it through Q�ow, and receive
GDSII output of the design. Furthermore, if an engineer requires
more control over individual steps, a custom �ow can be created
using a combination of a Make�le and Q�ow which we have done



WOSET 2018, November 2018, San Diego, CA Russell Friesenhahn and Johnathan York

Table 1: Summary of design �ow processes and the associ-
ated FOSS tools

Design Flow Process FOSS Tool
Behavioral Simulation Icarus Verilog

RTL Synthesis Yosys
Gate-Level Simulation Icarus Verilog

Logic Optimization ABC
Technology Mapping ABC

Placement Graywolf
Routing Qrouter

Static Timing Analysis Vesta
Physical Layout Magic

Design Extraction Magic
Design Rule Check Magic

Layout Versus Schematic Netgen
GDSII Output Magic

Misc. "Glue" Scripts Q�ow
Memory Compiler OpenRAM

for our project. This approach enables maximum �exibility while
leveraging as much of Q�ow’s ability to automate the design �ow.

Also encouraging, the design �ow does not have an upper limit
on the design size, at least that we have encountered. Anecdotally,
we are aware of other design teams using the tools to create much
larger designs than we have, to date, created, including small proces-
sor designs and systems-on-a-chip. The trade-o� we have noticed
is, not unexpected, the design runtimes. Placement, routing, and
layout extraction have signi�cant higher execution times as the
design size increases. However, we have seen e�ort put towards
eliminating performance bottlenecks in the past 12 months.

2.2 Q�ow Limitations
Despite working well together, the design �ow does have some
limitations. For starters, only 0.5µm to 180nm fabrication processes
are currently supported. This has not been fully investigated, but
we believe that almost all the tools would support the smaller
feature sizes except Magic’s DRC function. As we all know, as
fabrication processes shrink in size, new DRC rules arise to properly
constrain the design to accommodate the new fabrication tools’
limitations. Magic has software support for DRC rules down to the
typical 180nm processes. Beyond that, new software development
is required to support new fabrication processes. In summary, the
design �ow could immediately use smaller fabrication processes at
the risk of not being able to fully verify the manufacturability of
the completed design.

Another shortcoming that we have encountered is a lack of
support for hierarchical design. In all fairness, this is not the original
goal of the design �ow and Q�ow, but we believe this capability
is a natural progression that the tools must support to remain
competitive.

2.3 Q�ow Final Thoughts
In summary, there exists a FOSS VLSI EDA design �ow implemented
by the tools listed in Table 1. ARL:UT has been using the �ow, and it

works reasonably well. The development community surrounding
Q�ow appears strong: tools maintainers are responsive to bug
reports, continue to add new features, are open to coordination.
At least one start-up company has based much of their backend
technology on the design �ow presented by Q�ow.

3 ARL:UT’S CONTRIBUTIONS
Beyond developing in-house ASIC designs, our project’s goals in-
clude participating and contributing to the open-source community.
In addition to providing bug reports, we have contributed back with
two features which we will expand upon.

(1) Add interconnect delay to Vesta Static-Timing Analysis in
Q�ow

(2) Create a Continuous Integration test for the design �ow

3.1 Interconnect Delay
This internal R&D project originated to further Johnathan York’s
dissertation work, which evaluates the trade-o� between a mini-
mally recon�gurable circuit design and performance [10]. Depend-
ing on the design space region, interconnect delay can be a domi-
nating factor in a design’s performance. Interconnect delay is the
amount of time required for a signal to propagate its value from a
gate’s output to the input(s) of the downstream gate(s). Essentially,
this is the e�ect the wires have on the circuits operational speed.

The easiest method to determine the interconnect delay’s e�ect
on the design is to include the interconnects’ delay values in the
static timing analysis (STA) which provides the worst case operating
frequency for a design. As shown in Table 1, Vesta is the STA tool
included in Q�ow. However, at the outset of this e�ort, Vesta did
not take interconnect delay values as an input into its processing.
Furthermore, the design �ow did not have a reliable method to
calculate interconnect delay.

In coordination with the maintainer of Q�ow and Qrouter, we
planned a development path to include interconnect delay in the
STA process. First, Qrouter’s maintainer expanded the functionality
such that when a route is completed, Qrouter would also model
the resulting wire as a resistor-capacitor (RC) tree. The RC tree
information is then written to a text �le in a newly speci�ed format.

We developed software to ingest the RC tree �le, calculate the
Elmore delay of each interconnect, and write the result to a �le in
a format that Vesta understands. Vesta was then modi�ed to accept
the delay �le as an optional input and to use the interconnect
delay values when performing STA on the related net. This feature
addition provided the design �ow with a �rst-order approximation
of the e�ect interconnect delay has on a routed design.

3.2 Continuous Integration
The design �ow uses at least ten FOSS tools maintained by at least
�ve di�erent groups or individuals. Though the tools’ developers
do work together when issues arise, it is challenging for them to
maintain full compatibility at all times. New patches and features are
constantly being added to the most heavily developed tools. Though
a few of the tools have extensive regression testing, the entire
design �ow does not which would ostensibly fall under the Q�ow
repository. Though this constant state of �ux gave us con�dence in
the active development of the tools, it also presented a challenge in



ARL:UT and FOSS VLSI Tools WOSET 2018, November 2018, San Diego, CA

Figure 1: Gitlab Continuous Integration Pipeline Display

using the tools. With each problem encountered, the question arose,
"are we debugging our design or the design �ow?" We realized we
needed the following:

(1) a method to version all of the tools as a single unit
(2) a regression test for the design �ow
(3) the automation (as much as possible) of the �rst two

The solution to the �rst requirement was to gather all the tools
as submodules into a Git superproject. Within the superproject, we
create tags when a stable point across all the tools is found. Stables
points are identi�ed by a successful regression test which is also
part of the superproject. The regression test consists of the design
�ow correctly operating on �ve Verilog RTL designs from synthesis
through a passing LVS run. Though certainly not exhaustive, the
regression test has found issues in the design �ow operation which
are fed upstream to the maintainers. Many times, the responsible
maintainer has a patch committed within 1-2 days.

To implement continuous integration (CI), we created scripts to
automate the install of the tools and the operation of the regression
test. A user runs another script to update the superproject with
new commits from the submodules. Upon committing to the super-
project, the built-in CI feature in GitLab takes over. The tools are
installed at the superproject commit under test and the regression
test is executed. The steps of the CI process are shown in Figure 1
which is a screenshot of the GitLab website for the superproject.
We then create a tag if the regression test is successful or begin
debugging upon regression failure. In addition to maintaining this
superproject internally, we also host it on GitLab.com calling it
asic_tools [2].

3.3 Future Work
There are a lot of tools out there, and we expect that number to grow.
Ensuring that all those tools work together and remain compatible
as they grow in features is how FOSS EDA tools grow and mature
as a viable option. This is not a trivial endeavor.

We see that we can continue to re�ne and grow the continuous
integration framework. We welcome the addition of new tools
so that developers can be assured that not only does their tool
work standalone, but it works on a standard suite of test designs,

works in conjunction with other tools, and does so not only today,
but continues to work tomorrow. However, the greatest bene�t
from this type of testing is learning immediately when tools have
diverged. This knowledge can be acted on before it becomes too
costly to maintain compatibility.

4 RECOMMENDATIONS
4.1 Success at Every Stage
We are encouraged and optimistic by the OpenROAD [8] e�ort led
by UC San Diego. The desired outcome of complex ASIC and SoC
design in under 24 hours with no human-in-the-loop is impressive.
To achieve this, we imagine much of the standard design �ow
may be turned on its head. However, we also believe that this
new approach will have steps that overlap with the traditional
methods. We suggest that the tools developed that reach towards
the new might also be useful for plain ol’ regular VLSI design as well.
One of our frequent government sponsors has a saying for project
planning: Success at every stage. Though the intended goal is a
turnkey process, we believe it would be bene�cial to the community
for the developed tools to support stand-alone operation as well
as using standard �le formats. Perhaps this is already the planned
approach as we have seen several tools pushed up to the OpenROAD
GitHub account [5] already. Nevertheless, we wanted to express
our desire for this.

4.2 As FOSS as Possible
Answering the question of "what is open-source?" in the software
realm is relatively simple: Use developer tools that have a compati-
ble FOSS license and apply an appropriate license to the developed
software. This process is as pure FOSS as possible from beginning to
end. Unfortunately, this is simply not the case in ASIC development.

At the very least, due to intellectual property (IP) protections
secured via non-disclosure agreeements (NDAs), the fabrication
process is not open. It is unique to the chosen fabricator also making
the �nal design output not portable. With the de facto end of MOSIS’
Scalable CMOS about ten years ago as the technology scaled into
very deep submicron, the standard cell libraries are also under
NDA protection. A standard cell library, to be compatible with a
fabrication process, almost certainly requires IP knowledge of that
same process. With the cell library in hand, a full design can be
implemented using tools of the engineer’s choice. However, to get
to this point, the team or its organization had to negotiate and
sign one or more NDAs. Depending on the organization, this is a
signi�cant barrier (and sometimes an impossible one as one of our
team members experienced at a previous organization).

At least one start-up company, efabless [1], has recognized that
this barrier exists for academics, hobbyists, and fellow small start-
ups and has worked around it. Efabless provides a cloud platform of
FOSS design tools that target a contracted fabricator’s process. The
designer never sees or has access to the GDSII which eliminates the
IP access issue thus obviating an NDA. This may be an excellent
option for a hobbyist but is not acceptable for us. We need to have
access to and own our �nal design products.

For this reason, we have embraced using FOSS for all pieces after
the cell library for maximum long-term �exibility. We believe that
the bene�ts of FOSS also apply to memory compilers, metal �ll



WOSET 2018, November 2018, San Diego, CA Russell Friesenhahn and Johnathan York

tools, and similar "peripheral" design support tools. Mainly that
FOSS enables an organization to more fully own their completed
designs.

5 CONCLUSION
In the past twenty-four months, ARL:UT has evaluated the avail-
able FOSS VLSI EDA tools and selected a design �ow we have the
most con�dence in. We have contributed new features, discovered
software bugs, and provided patches upstream. We have con�gured
and now manage a continuous integration process to facilitate test-
ing updates to the tools. Though the tools have some idiosyncrasies,
through development, testing, and curating expertise in operating
the tools, we are con�dent in our ability to create in-house ASIC
designs and plan to exercise that capability through to fabrication
over the next 12 months.

We are excited by the OpenROAD goals and are anxious to see
the project’s results. If possible, we believe keeping the old design
methods in mind when developing tools for OpenROAD will greatly
assist the current FOSS VLSI EDA tools.

We look forward to collaborating with others towards the ad-
vancement of free and open source VLSI EDA tools and are actively
soliciting ways to do so. Speci�cally, we’re looking to

• provide early-adopter feedback on new tools using designs
we’re currently working on

• facilitate setting up continuous integration, regression test-
ing, and compatibility testing with old and new tools

BIOGRAPHY
Russell Friesenhahn is an Engineering Scientist at the Applied Re-
search Laboratories (ARL:UT) since 2014. He holds a B.S. in Electri-
cal Engineering from the University of Texas at Austin and a M.S.
in Electrical Engineering from University of Southern California.
Mr. Friesenhahn specializes in digital design targeting FPGAs and
ASICs. He has been the lead designer on �ve research ASICs since
2009.

Johnathan York received a BS, MS, and a Ph.D in Electrical En-
gineering at the University of Texas at Austin. He has worked at
the Applied Research Laboratories (ARL:UT) since 2001, working
primarily with high-throughput real-time Digital Signal Processing
applications. Dr. York’s research focus is heterogeneous recon�g-
urable computing.

ACKNOWLEDGEMENTS
Russell and Johnathan would like to acknowledge their student
interns whom without this work would not have been possible.
Michael Koger Darden for the �rst iteration of the continuous
integration setup and regression test. Alihussein Momin for his
investigation in hierarchical design options. Shrey Sachdeva and
Timberlon Gray for their work on our �rst ASIC design.

REFERENCES
[1] 2018. efabless.com. (2018). Retrieved August 28, 2018 from https://efabless.com
[2] 2018. FOSS Hardware Tools - asic_tools. (Aug 2018). Retrieved August 28, 2018

from https://gitlab.com/fossht/asic_tools
[3] 2018. Ganymede Network Directory Management System. (Aug 2018). Retrieved

August 28, 2018 from https://github.com/jonabbey/Ganymede
[4] 2018. GPS Toolkit. (Aug 2018). Retrieved August 28, 2018 from https://github.

com/SGL-UT/GPSTk

[5] 2018. OpenROAD (abk). (2018). Retrieved August 28, 2018 from https://github.
com/abk-openroad

[6] Jonathan Abbey and Michael Mulvaney. 1998. Ganymede: An Extensible and
Customizable Directory Management Framework.. In LISA. 197–218.

[7] ARL:UT. 2018. About Us. (Aug 2018). Retrieved August 28, 2018 from http:
//www.arlut.utexas.edu/about.html

[8] UC San Diego. 2018. OpenROAD - Foundations and Realizatio of Open
and Accessible Design. (Aug 2018). Retrieved August 28, 2018 from http:
//theopenroadproject.org

[9] Tom Gaussiran, D Munton, Ben Harris, and B Tolman. 2004. An open source
toolkit for GPS processing, total electron content e�ects, measurements and
modeling. In International Beacon Satellite Symposium, Trieste, Italy.

[10] Johnathan York. 2011. Multiple personality integrated circuits and the cost of
programmability. Ph.D. Dissertation. The University of Texas at Austin.

https://efabless.com
https://gitlab.com/fossht/asic_tools
https://github.com/jonabbey/Ganymede
https://github.com/SGL-UT/GPSTk
https://github.com/SGL-UT/GPSTk
https://github.com/abk-openroad
https://github.com/abk-openroad
http://www.arlut.utexas.edu/about.html
http://www.arlut.utexas.edu/about.html
http://theopenroadproject.org
http://theopenroadproject.org

	Abstract
	1 Introduction
	2 The Qflow Ecosystem
	2.1 Qflow Efficacy
	2.2 Qflow Limitations
	2.3 Qflow Final Thoughts

	3 ARL:UT's Contributions
	3.1 Interconnect Delay
	3.2 Continuous Integration
	3.3 Future Work

	4 Recommendations
	4.1 Success at Every Stage
	4.2 As FOSS as Possible

	5 Conclusion
	References

