
Generic Logic Synthesis meets RTL Synthesis
Heinz Riener1 Mathias Soeken2 Eleonora Testa1 Giovanni De Micheli1

1Integrated Systems Laboratory, EPFL, Lausanne, Switzerland
2Microsoft, Switzerland

Abstract—We present an integration of Generic Logic Syn-
thesis, a recent methodology for developing logic synthesis algo-
rithms that are independent of a specific technology-independent
logic representation, in an RTL synthesis flow. This integration
allows us to choose different multi-level logic representations
during the synthesis process and judge the impact of this
choice on the overall synthesis result. We propose a prototypical
implementation that combines the open-source RTL synthesis
framework Yosys with the EPFL logic synthesis library mocktur-
tle. In an experimental evaluation, we show the synthesis results
for different arithmetic and cryptographic benchmarks from
OpenCores.org and for a hand-crafted modular multiplier using
four different multi-level logic representations in technology-
independent logic optimization.

I. INTRODUCTION

Generic Logic Synthesis [1] is a recent methodology in
technology-independent logic synthesis for developing algo-
rithms that can be generically applied to different (multi-level)
logic representations. As a consequence, this methodology en-
ables a fast realization of complex synthesis flows for tailored
logic representations such as majority-inverter graphs (MIG)
or XOR-AND graphs (XAG) without the need for replicating
and adapting large portions of source code.

Each logic synthesis algorithm is parameterized with a
logic representation and generically implemented using a set
of naming conventions with agreed semantics defined by a
common network interface API. Logic representations then
have to implement (a subset of) the network interface API.
When a generic logic synthesis algorithm is instantiated with
a concrete logic representation, static checking ensures at
compile-time that the logic representation implements all
methods of the network interface API required by the logic
synthesis algorithm. If one (or more) methods of the network
interface API are missing, or if the interface is not correctly
implemented, a compile-time error is reported. Otherwise, if
compilation succeeds, a highly-tailored (and optimized) logic
synthesis algorithm for the concrete logic representation at
hand is generated.

A prototypical implementation of Generic Logic Synthe-
sis [1] has been presented for the scalable peephole synthesis
framework introduced by Mishchenko and Brayton [2]. The
implementation is publicly available in the EPFL logic syn-
thesis library mockturtle [3].

In this paper, we demonstrate how the mockturtle library
can be integrated into an RTL synthesis flow and show the
impact of the choice of a multi-level logic representation in
RTL synthesis after LUT mapping.

II. LOGIC SYNTHESIS INTEGRATED IN RTL SYNTHESIS

A. Synthesis and verification flow

In this section, we illustrate the overall RTL synthesis flow
by means of a running example. In the example, we synthesize
a multiplier module provided in the hardware description
language Verilog.

1 module top(input clk, input[7:0] a,b, output reg[15:0] c);
2 always @(posedge clk) c <= a * b;
3 endmodule // top

Synthesis. As synthesis suite, we use the open-source
synthesis framework Yosys [4]. Yosys comes with a shell
interface which allows sessions like the following:

yosys> read_verilog file.v
yosys> prep
yosys> techmap
yosys> cirkit -script optimize.cs
yosys> flatten
yosys> write_verilog file_optimized.v

In the session above, a conservative RTL synthesis flow
(‘prep’) followed by a technology mapping step (‘techmap’)
and a flattening step (‘flatten’) are carried out on the Verilog
file.

We have implemented a new command ‘cirkit’ into Yosys
that enables us to run logic optimization scripts composed
of optimizing transformations provided by the mockturtle
library.1 Each combinational part of the technology-mapped
implementation is extracted and logically optimized using the
script ‘optimize.cs’ (‘cirkit’). Input and output of the ‘cirkit’
command are provided in form of LUT networks. The logi-
cally optimized combinational parts are finally re-composed,
flattened into one gate level netlist, and the optimized gate
level netlist is written into a new Verilog file.

Fig. 1 depicts the overall interaction of the RTL synthesis
engine with the logic synthesis framework.

Verification. The correctness of the optimizing transforma-
tions carried out by the proposed flow can be verified in two
stages:

1) Combinational equivalence checking (CEC): We prove
that LUT networks provided as input and output to
CirKit are functionally equivalent using combinational
equivalence checking implemented in ABC [5].

2) Weak sequential equivalence checking (SEC): We prove
that the outputs of the initial RTL design and the
obtained gate level netlist do not diverge for a fixed

1The modified Yosys synthesis suite can be found online:
https://github.com/hriener/yosys/



RT level
design

RTL
synthesis
(Yosys)

Gate level
netlist

LUT
network

LUT
network

Logic
synthesis
(CirKit)

Fig. 1. RTL synthesis with integrated logic optimization

number of time steps when fed with same inputs using
sequential equivalence checking implemented in Yosys.

B. Optimization scripts

CirKit2 is a front-end for the mockturtle library that instanti-
ates the implemented algorithms and provides a shell interface
for executing sequences of optimizing transformations. In the
following, we focus on the subset of the supported commands
used to interface with the RTL synthesis suite Yosys. A typical
CirKit optimization script for this purpose looks as follows:

cirkit> read_blif <TMP_DIR>/input.blif
cirkit> lut_resynthesis --mig
cirkit> cut_rewrite --mig
cirkit> lut_mapping
cirkit> collapse_mapping
cirkit> write_blif <TMP_DIR>/output.blif

First, the LUT network is read (‘read_blif’). This LUT
network is composed of LUTs with potentially large number of
fan-ins. The goal of LUT resynthesis (‘lut_resynthesis’) is to
decompose these LUTs into primitive gates of a homogeneous
gate library to express the LUT network in form of a multi-
level logic representation. The additional parameter ‘--mig’
specifies that the gate library of MIGs should be used, which
consists only of majority-of-three (MAJ-3) gates and inverters.
Multi-level logic optimization algorithms, such as Boolean
rewriting [6] (‘cut_rewrite’) are then carried out to optimize
the logic representation with respect to a cost function. Finally,
the optimized multi-level logic representation is mapped back
into a LUT network (‘lut_mapping’ and ‘collapse_mapping’).
The obtained LUT network is written into a file (‘write_blif’)
to be read by Yosys.

In practice, the first and last command (‘read_blif’ and
‘write_blif’) of a CirKit optimization script are automatically
generated by Yosys and need not be part of the optimization
script.

C. LUT resynthesis

LUT resynthesis is an algorithm that translates a LUT
network into an arbitrary gate-based network. Each LUT
is synthesized into subnetwork of the targeted gate-based
network type, based on the LUT’s truth table. The subnetworks

2https://github.com/msoeken/cirkit

are composed according to the LUT structure of the original
LUT network.

The flexibility lies in the underlying synthesis algorithm. It
is important to note, that for LUT resynthesis the synthesis
algorithm must find a subnetwork for all LUT functions f
in the LUT network. Possible synthesis algorithms are Shan-
non decomposition, database lookup, bi-decomposition, exact
synthesis [7], or DSD decomposition.

D. Cut rewriting
Cut rewriting is based on the idea to improve a logic

network by changing the gate-level structure of a subcircuit.
Subcircuits are enumerated using cut enumeration [8]. For
each cut, several alternative gate-level structures are computed,
and the effect of substituting the structure for the current one
is evaluated. Note that not all gates may be removed when
removing the current structure, because they are required by
other gates outside of the cut. Similarly, the new gate-level
structure to be inserted in the logic network may make use of
already existing logic. Analysing the impact and gain in this
setting is referred to as DAG-aware rewriting [9].

Cut rewriting is implemented as a generic algorithm in
mockturtle, where the synthesis algorithm to compute alter-
native gate-level structures for a cut is passed as a parameter.
In fact, the same synthesis algorithms that are used in LUT
resynthesis can be used for cut rewriting, which is another
manifestation of generic logic synthesis in mockturtle.

E. LUT mapping
LUT mapping (see, e.g., [10]) addresses the problem of

resynthesizing a logic network with small gates into a logic
network with larger gates, where the gate’s size refers to the
number of inputs. It can be considered the dual problem of
LUT resynthesis, in which large gates are resynthesized into
smaller gates. A concrete typical instance of LUT mapping,
e.g., used in FPGA programming, is to map a gate-level
network (with gates that do not have more than 3 inputs)
into a logic network that supports gates which can implement
arbitrary 6-input functions.

Most LUT mapping algorithms are based on cut enumera-
tion. First, cuts are enumerated for all gates in the input logic
network. Then some of the gates are determined to be in the
mapped network by selecting one of the gate’s cuts, such that
the following conditions hold: (i) all outputs must be mapped,
(ii) if a gate is mapped, then also each leave in the gate’s
selected cut must be either a primary input or mapped as well.

LUT mapping usually only determines which gates are
mapped and which cuts are chosen; it does not create the larger
LUT network. We follow this convention in CirKit, where the
command ‘lut_mapping‘ performs the mapping by annotating
gates in the logic network, and ‘collapse_mapping‘ creates the
LUT mapping based on the annotations.

III. EXPERIMENTAL RESULTS

Experimental setup. We have evaluated the quality and
performance of the proposed RTL synthesis framework consid-
ering four different multi-level logic representations: (1) AND-
inverter graphs (AIGs), (2) majority-inverter graphs (MIGs),



TABLE I
NUMBER OF LUTS OF INDIVIDUAL MODULES AFTER RTL SYNTHESIS, LOGIC SYNTHESIS, AND LUT MAPPING

Benchmark (modules opt. 5×) AIG MIG XAG XMG

Name I O LUTs Levels LUTs Levels LUTs Levels LUTs Levels LUTs Levels

modular_mul 258 512 512 1 512 1 512 1 512 1 512 1
modular_add 512 256 4827 55 1125 220 1035 72 1039 200 1044 35
modular_dbl 256 256 2287 35 361 62 357 38 360 62 382 13

sha1 948 911 9536 84 1672 48 1834 40 1488 38 1544 29

sha256 1140 1103 14649 77 2443 50 2697 43 2212 40 2241 29

sha512 2200 2162 30337 96 4971 82 5367 69 4246 63 4510 50

md5 10240 2048 83460 70 22086 68 23041 50 16595 59 15069 39

Benchmark (modules opt. until convergence) AIG MIG XAG XMG

Name I O LUTs Levels LUTs Levels LUTs Levels LUTs Levels LUTs Levels

modular_mul 258 512 512 1 512 1 512 1 512 1 512 1
modular_add 512 256 4827 55 1015 242 1035 72 638 129 766 129
modular_dbl 256 256 2287 35 357 52 357 38 356 52 382 13

sha1 948 911 9536 84 1378 37 1777 40 1404 37 1443 25

sha256 1140 1103 14649 77 2164 38 2691 43 1988 38 2154 24

sha512 2200 2162 30337 96 - - 5329 69 3627 69 3786 41

md5 10240 2048 83460 70 14605 65 23034 50 14429 62 13916 38

TABLE II
NUMBER OF LUTS AFTER RTL SYNTHESIS, LOGIC SYNTHESIS, LUT MAPPING, AND FLATTENING

Benchmark (opt. 5× & flattened) AIG MIG XAG XMG

Name LUTs DFFs LUTs Time [s] LUTs Time [s] LUTs Time [s] LUTs Time [s]

modular_mul 527342 0 379442 64.18 355472 55.72 357257 108.84 364142 50.53
sha1 3014 911 1672 109.05 1834 61.58 1488 47.92 1544 62.10
sha256 3420 1103 2443 253.79 2697 85.83 2212 56.39 2241 80.60
sha512 7687 2162 4971 1796.94 5367 418.78 4246 472.47 4510 461.80
md5 23241 36608 22086 582.51 23041 744.46 16595 143.81 15069 244.54

Total runtime: 2806.46 1366.38 829.43 899.57
Average reduction: 27.22% 31.22% 32.39% 31.79%

Benchmark (opt. until convergence & flattened) AIG MIG XAG XMG

Name LUTs DFFs LUTs Time [s] LUTs Time [s] LUTs Time [s] LUTs Time [s]

modular_mul 527342 0 350072 175.53 355727 29.10 253982 92.22 293252 34.05
sha1 3014 911 1378 575.16 1777 179.96 1404 134.94 1443 163.77
sha256 3420 1103 2164 1421.30 2691 102.01 1988 236.92 2154 92.97
sha512 7687 2162 - T/O 5329 1057.04 3627 2285.83 3786 1848.68
md5 23241 36608 14605 2317.90 23034 906.95 14429 240.98 13916 300.60

Total runtime: 4489.89 2275.06 2990.89 2440.07
Average reduction: 32.34% 31.19% 51.23% 44.29%

(3) XOR-AND graphs (XAGs), and (4) XOR-majority graphs
(XMGs).

As benchmarks, we use different arithmetic and crypto-
graphic designs obtained from OpenCores.org (sha1, sha256,
sha512, md5) and a hand-crafted modular multiplier design
(modular_mul). The benchmarks are optimized with the flow
script described in Section II, where ‘cut_rewrite’ is repeated
5× and repeated until convergence, respectively.

All experiments have been conducted on an Intel® Core™

i7-7567U CPU with 3.50GHz and 16GB RAM. We use
a global time limit of 100 minutes for executing an RTL
synthesis flow on a benchmark.

Experimental results. Table I presents synthesis results for
individual modules of the RTL design. Each row corresponds
to one module of a design. Bold font denotes a top-level
module. The first five columns from left to right show the

module name (Name), the number of primary inputs (I), the
number of primary outputs (O), the number of LUTs (LUTs)
and the number of levels (Levels) after LUT mapping of the
individual modules. The remaining columns show the number
of LUTs (LUT) and levels (Levels) after logic synthesis
and LUT mapping for the four different multi-level logic
representations, respectively.

Table II presents synthesis results after flattening the in-
dividual modules into one monolithic netlist. The first three
columns from left to right show the name of the top-level
module (Name), the number of LUTs (LUTs) and the num-
ber of flipflops (DFFs) of the flattened benchmarks without
additional logic optimization. The remaining columns list
the number of LUTs (LUTs) and the total run-time (Time)
required for RTL synthesis with integrated logic synthesis
for the four multi-level logic representations, respectively. We



mark the best area result in terms of LUTs in green color.
Discussion. Logic synthesis techniques allow us to reduce

different cost functions (area, depth, etc.) when integrated
into an RTL synthesis flow. In this work, we focus on
area reduction for FPGAs. In our experiments, applying a
logic synthesis flow reduces the number of LUTs by up to
51.23% depending on the intermediate logic representation in
use. In general, cut rewriting for majority-based intermediate
representations tends to converge faster, whereas allowing
XOR gates in the intermediate representation leads to a better
average reduction of the number of LUT gates. The latter
effect is likely due to the choice of optimizing arithmetic
and cryptographic benchmarks, which both typically contain
many XOR gates. The time limit of 100 minutes is only once
reached for the benchmark md5 for which LUT resynthesis
into ANDs and inverters does not finish in time. Overall,
XAGs and XMGs perform best: 51.23% of LUTs are reduced
in 59.82m when using XAGs and 44.30% in 40.67m when
using XMGs.

IV. CONCLUSION

We have proposed an integration of RTL synthesis with
Generic Logic Synthesis. This integration allows us to run
RTL synthesis while choosing one of many multi-level logic
representations in technology-independent logic optimization.
We have shown the synthesis results after LUT mapping
for FPGAs considering four different RTL designs from
OpenCores.org and a hand-crafted modular multiplier con-
sidering four different logic representations (AIGs, MIGs,
XAGs, XMGs). The experimental results indicate that high-
effort logic optimization techniques are capable of reducing
the number of LUTs of these benchmarks by up to 51.23%.
The results also show that the choice of the multi-level logic
representation has an important impact on the compaction of
the logic and the performance of the synthesis process. For
instance, switching from AIGs to XAGs for the hand-crafted
modular multiplier leads to a reduction of approximately
100’000 LUTs (27.45%) and almost reduces the total runtime
by almost 2× (47.47%).

The proposed integration of Generic Logic Synthesis and
RTL synthesis enables several promising directions for future
research:

1) Mixing logic representations: In the experiments, we
chose the same logic representations for all modules
in the RTL design. The presented approach, however,
is capable of choosing different logic representations
for each module of an RTL design. Designs such as
processors, that integrate arithmetic as well as control
logic, may substantially benefit from a more fine-tuned
selection of logic representations. An interesting chal-
lenge for future work is to automatically decide which
logic representations to chose for a module at hand.

2) Mapping into technology libraries: The proposed syn-
thesis flow interacts with logic synthesis on the granular-
ity of modules. Each combinational module is extracted
from the RTL design, optimized, and re-integrated into

the design. The modules are represented as technology-
mapped LUT networks using Yosys standard gate li-
brary. Mapping from this standard gate library into the
respective logic representation and back leads in some
cases to suboptimal results. For instance, the number of
LUTs increases after re-integrating the optimizing MIG
of modular_mul into Yosys, such that optimizing the
MIG 5× leads to a better result than optimizing the MIG
up to convergence. Experimenting with different gate
libraries has the potential to result in better synthesis
quality or runtime.

V. ACKNOWLEDGMENTS

This research was supported by the Swiss National Science
Foundation (200021-169084 MAJesty), by the European Re-
search Council in the project H2020-ERC-2014-ADG669354
CyberCare, and by the EPFL Open Science Fund.

REFERENCES

[1] H. Riener, E. Testa, W. Haaswijk, A. Mishchenko, L. G. Amarù,
G. De Micheli, and M. Soeken, “Scalable generic logic synthesis:
One approach to rule them all,” in Proceedings of the 56th Annual
Design Automation Conference 2019, DAC 2019, Las Vegas, NV,
USA, June 02-06, 2019, 2019, pp. 70:1–70:6. [Online]. Available:
https://doi.org/10.1145/3316781.3317905

[2] A. Mishchenko and R. K. Brayton, “Scalable logic synthesis using a
simple circuit structure,” in International Workshop on Logic Synthesis,
2006, pp. 15–22.

[3] M. Soeken, H. Riener, W. Haaswijk, and G. De Micheli, “The EPFL
logic synthesis libraries,” May 2018, arXiv:1805.05121.

[4] D. Shah, E. Hung, C. Wolf, S. Bazanski, D. Gisselquist, and
M. Milanovic, “Yosys+nextpnr: An open source framework from verilog
to bitstream for commercial FPGAs,” in 27th IEEE Annual International
Symposium on Field-Programmable Custom Computing Machines,
FCCM 2019, San Diego, CA, USA, April 28 - May 1, 2019, 2019, pp.
1–4. [Online]. Available: https://doi.org/10.1109/FCCM.2019.00010

[5] R. K. Brayton and A. Mishchenko, “ABC: an academic industrial-
strength verification tool,” in Computer Aided Verification, 22nd
International Conference, CAV 2010, Edinburgh, UK, July 15-
19, 2010. Proceedings, 2010, pp. 24–40. [Online]. Available:
https://doi.org/10.1007/978-3-642-14295-6_5

[6] H. Riener, W. Haaswijk, A. Mishchenko, G. De Micheli, and
M. Soeken, “On-the-fly and DAG-aware: Rewriting Boolean
networks with exact synthesis,” in Design, Automation & Test
in Europe Conference & Exhibition, DATE 2019, Florence, Italy,
March 25-29, 2019, 2019, pp. 1649–1654. [Online]. Available:
https://doi.org/10.23919/DATE.2019.8715185

[7] W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli, “SAT-
based exact synthesis: Encodings, topology families, and parallelism,”
IEEE Trans. on Computer-Aided Design, 2019, accepted, in press.
[Online]. Available: https://ieeexplore.ieee.org/document/8634910

[8] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling
a general and efficient FPGA mapping solution,” in Proceedings
of the 1999 ACM/SIGDA Seventh International Symposium on
Field Programmable Gate Arrays, FPGA 1999, Monterey, CA,
USA, February 21-23, 1999, 1999, pp. 29–35. [Online]. Available:
https://doi.org/10.1145/296399.296425

[9] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “DAG-aware AIG
rewriting a fresh look at combinational logic synthesis,” in Proceedings
of the 43rd Design Automation Conference, DAC 2006, San Francisco,
CA, USA, July 24-28, 2006, 2006, pp. 532–535. [Online]. Available:
https://doi.org/10.1145/1146909.1147048

[10] J. Cong and Y. Ding, “FPGA technology mapping,” in
Encyclopedia of Algorithms, 2016, pp. 773–777. [Online]. Available:
https://doi.org/10.1007/978-1-4939-2864-4_148


