
EvoApproxLib: Extended Library of
Approximate Arithmetic Circuits

Vojtech Mrazek, Zdenek Vasicek, Lukas Sekanina
Faculty of Information Technology, IT4Innovations Centre of Excellence

Brno University of Technology
Brno, Czech Republic

{mrazek,vasicek,sekanina}@fit.vutbr.cz

Abstract—Approximate circuits and approximate circuit design
methodologies attracted a significant attention of researchers
as well as industry in recent years. In order to accelerate the
approximate circuit and system design process and to support
a fair benchmarking of circuit approximation methods, we
proposed a library of 8-bit approximate adders and multipliers
called EvoApprox8b. The library was extended by thousands
of new designs with bit-width from 8 to 128 that form Pareto
fronts with respect to several error metrics. The library provides
Verilog, Python, Matlab and C models of all approximate circuits.
A subset of circuits selected from EvoApproxLib library is
available at: https://ehw.fit.vutbr.cz/evoapproxlib.

Index Terms—Approximate computing, VLSI, Library, Bench-
marking

I. INTRODUCTION

Despite the rapid developments in the very-large-scale inte-
gration (VLSI) circuit technologies and in modern circuit de-
sign techniques, the overall energy consumption of integrated
circuits is rapidly growing mainly due to their increasing
complexity needed in current computing systems. At the same
time, many computationally intensive applications, e.g. image
recognition, signal processing and data mining, are widely
implemented in these systems. Moreover, the expansion of
modern battery-powered and smart devices such as mobile
systems, IoT nodes and wearable electronics emphasizes the
need for low-power implementations.

Fortunately, many of the computationally intensive applica-
tions feature an intrinsic error-resilience property [1]. Since
they often process noisy or redundant data and their users are
willing to accept certain errors in many cases, an emerging
paradigm, the so-called approximate computing, is now em-
ployed in the design of the energy-efficient implementations.
At the circuit level, approximations (i.e. circuit simplifications)
are intentionally introduced to find a good trade-off between
power consumption, performance and error.

The approximations can be introduced to the circuit in
various steps of the standard circuit design flow. In this
work, we primarily focus on the technology independent logic
synthesis step. The approximations introduced in this step,
the so-called functional approximations, modify the Boolean
function of the circuit. It has one important advantage – the
approximate circuit can be implemented in arbitrary ASIC
as well as FPGA technology, because it is assumed that the
technology dependent synthesis is performed by means of

some well-optimized open source or commercial tools after
the approximation is conducted.

The methods introduced for the functional approximations
can be divided into two categories: (1) manual, and (2)
automated. The manual (ad-hoc) methods are developed for a
specific circuit component such as adders and multipliers [2],
[3]. On the other hand, the automated methods use some
general-purpose circuit simplification, resynthesis and approx-
imation techniques and enable us to approximate arbitrary
circuits. These methods start with an original (exact) circuit
and, typically iteratively, modify its structure.

However, the functional approximation of complex circuits
is a time-consuming process. As many of these circuits contain
common arithmetic components (circuits) such as adders and
multipliers, they can be approximated by replacing selected
components by their approximate implementations available in
a suitable library. Hence, we proposed a comprehensive library
of approximate arithmetic circuits two years ago [4]. These
circuits were designed by means an automated approximation
algorithm described in Section II. In this paper, we report
an extended version of the library which has been developed
according to the needs of the design community and with the
help of design techniques that were available after introducing
the first version of the library. The extended version of the
library is presented in Section III.

II. AUTOMATED CONSTRUCTION OF APPROXIMATE
ARITHMETIC CIRCUITS

The method used to obtain the library follows the method-
ology introduced in [5]. It is a general-purpose approximation
method for combinational circuits based on Cartesian Genetic
Programming (CGP). CGP represents candidate circuits as
directed acyclic graphs and iteratively modifies the circuit to
reach design objectives while ensuring that various constraints
(e.g. the error below a given threshold) are not violated.

A. Errors of approximate circuits

The quality of approximate combinational circuits is typi-
cally expressed using one or several error metrics. In addition
to the error rate (ER), the average-case as well as the worst-
case situation can be analyzed. Among others, the mean
absolute error (MAE) and the mean relative error (MRE) are
the most useful metrics that are based on the average-case



analysis. Moreover, the mean square error (MSE) is typically
analyzed because it is important for PSNR calculation. Selec-
tion of the right metrics is a key step of the whole design.

The error metrics for an approximate circuit Oapprox with
respect to the accurate circuit Oorig are defined as follows.
Note that as ni is the number of primary inputs, the operand’s
width is ni/2 bits and ∀i is enumeration of all possible input
vectors.

ER =

∑
∀i:O(i)

approx 6=O
(i)
orig

1

2ni
, (1)

MAE =

∑
∀i

∣∣∣O(i)
approx −O(i)

orig

∣∣∣
2ni

, (2)

MSE =

∑
∀i

∣∣∣O(i)
approx −O(i)

orig

∣∣∣2
2ni

, (3)

MRE =

∑
∀i

∣∣∣O(i)
approx−O

(i)
orig

∣∣∣
max(1,O

(i)
orig)

2ni
, (4)

WCE = max
∀i

∣∣∣O(i)
approx −O

(i)
orig

∣∣∣ , (5)

WCRE = max
∀i

∣∣∣O(i)
approx −O(i)

orig

∣∣∣
max(1, O

(i)
orig)

. (6)

B. Cartesian genetic programming

Cartesian genetic programming (CGP) has grown from a
method of evolving digital circuits. CGP especially differs
from other genetic programming branches in (i) the solution
representation and (ii) the search mechanism.

1) Representation: The key part of CGP is the representa-
tion of candidate circuits. A candidate circuit is represented as
an integer netlist describing a constant number of components
(N ). These components (nodes) are organized in a two-
dimensional grid of nc columns and nr rows (N = nc · nr).
The number of primary inputs and outputs of the circuit is
denoted ni and no. The function of the nodes depends on the
level of abstraction used in modeling, where logic gates and
more complex components from the technology library can
naturally be utilized. Every component has up to na inputs
and nb outputs. For example, if standard logic gates are used
as components, na = 2 and nb = 1. An example of a circuit
represented in CGP is given in Fig. 1).

2) Search algorithm: Every candidate circuit represents one
design point in the design space. In CGP, new designs are
created by introducing small random modifications to the
chromosome. This operation is called the mutation and it
typically modifies h integers of the chromosome. Note that
all modifications must lead to valid circuits, i.e. only valid
function codes and connections can be created.

The search method is based on (1+λ) evolutionary strategy
which is usually used for a single-objective circuit approxi-
mation by means of CGP [6]. The search algorithm can start

Fig. 1. A two-bit multiplier represented in CGP with parameters:
ni = no = 4, nc = nr = 3, na = 2, nb = 1,Γ =
{0identity , 1not, 2and, 3or, 4xor, 5nand, 6nor, 7xnor, 8cont0, 9const1}.

with either a randomly generated initial population or existing
designs. The population size is 1 + λ. After evaluating the
initial population (i.e. measuring the circuit functionality and
cost the following steps are repeated until the termination
condition is not satisfied: (i) the best-scored circuit (called the
parent) is selected; (ii) λ offspring circuits are created from the
parent by means of mutation; (iii) the population is evaluated.

C. Circuit approximation using CGP

In the context of approximate computing, three evolutionary
approximation strategies were developed (Fig. 2).

Fig. 2. Evolutionary approximation strategies (a simplified situation for
the area-error optimization): (a) resource-oriented, (b) error-oriented and (c)
multi-objective. The white points denote the initial (accurate) circuit, the black
points are the desired approximate circuits and the crosses denote the valid
candidate solutions (design points).

1) Resources-oriented method: CGP is used to minimize
the error criterion under the assumption that only mi compo-
nents (gates) are available and mi is lower than the minimal
number of components (gates) needed to implement the accu-
rate function [7].

2) Error-oriented method: The target error range (e.g. the
worst-case error), determined by emin and emax, is specified
by the user. The goal is to optimize the number of components
(or area or power consumption) while the error of the circuits
is kept between the target valuesemin and emax [8]. If various
tradeoffs between the error and the number of components
are requested, CGP is executed several times with emax as
the parameter.

3) Multi-objective CGP: Compared to previous methods
that employ a single-objective optimization (one fitness func-
tion with constraints), the multi-objective method allows to
optimize the error and other key circuit parameters (area,
delay and power consumption) together in one CGP run [9].



We are primarily interested in approximate circuits belonging
to the Pareto set which contains the so-called nondominated
solutions. For example, consider two circuits C1 and C2.
Circuit C1 dominates another circuit C2 if: (1) C1 is no worse
than C2 in all objectives, and (2) C1 is strictly better than C2
in at least one objective.

The design flow for approximation of arithmetic circuits
is given in Figure 3. The methodology typically starts with
an accurate circuit. The candidate circuits are generated and
consequently evaluated by means of some evaluation tool. The
evaluation must be fast — for small circuits the simulation uti-
lizing all possible input vectors can be used. However, for large
circuits this approach is not tractable. A possible solution is
to employ advanced verification methods, e.g. SAT-based [10]
or BDD-based [11] formal verification. The methodology can
easily handle arbitrary constraints such as the time-limit for
formal verification (promptly verifiable circuits [10]) or special
requirements such as accurate multiplication by zero [12].

Fig. 3. Overall scheme of automated approximation using Cartesian Genetic
Programming.

III. LIBRARY OF APPROXIMATE ARITHMETIC CIRCUITS

The library contains thousands of various arithmetic circuits
as shown in Table I. Since the enormous number of com-
ponents makes the selection of the most suitable component
for a given application difficult, we identified a subset of
components and stored them to EvoApproxLibLITE library.
The selection follows the principles Pareto optimality with
respect to five objectives in which power consumption is
compared against EP, MAE, WCE, MSE and MRE errors.
For each of the five subsets of components, ten circuits evenly
distributed along the power axis are taken.

An example of one Pareto subset for 8-bit adders and
multipliers is shown in Fig. 4. The components in the selected
subset are distributed along the whole range of the error.
Contrasted to the previous version of the library, no additional
constraints on the WCRE error are introduced (the older ver-
sion limits the WCRE to 100% [4]). It means that the selected
subset of components represents better compromises (between
exactly two objectives) that those components occupying the
Pareto front in [4].

Selected approximate circuits and their various parameters
can be downloaded from the EvoApprox8b website https:
//ehw.fit.vutbr.cz/evoapproxlib. It contains circuit models for
Verilog, Matlab, Python and C. This enables the user to
integrate the circuits to hardware as well as software projects

TABLE I
NUMBER OF COMPONENTS FOR VARIOUS CIRCUITS IN EVOAPPROXLIB

Circuit Bit-width # components

adder

8 6,979
9 332

12 4,661
16 1,437
32 916
64 176
128 196

multiplier

8 29,911
12 3,495
16 35,406
32 349

Fig. 4. Selected 8-bit unsigned adders (top) and 8-bit multipliers (bottom)
from Power-MAE Pareto subset compared to the former version of EvoAp-
prox8b library.

and design tools (Fig. 5). All circuits can thus be simulated
in order to obtain their other parameters that are not listed on
the web site (e.g. the errors under different error metrics or
power consumption for another fabrication technology).

Fig. 5. Integration of the proposed library to the design process.

IV. CONCLUSIONS

In this paper we presented a rich library of approximate
adders and multipliers which is primarily intended for creating



approximate circuits needed in approximate implementations
of complex applications such as energy-efficient image and
video processing, deep learning and data mining. For each
components, Matlab, C, Python and Verilog models are avail-
able for the end users. The users can select the components
from the library manually or automated methods can be
used [13]. Our future work will be devoted to extending
the library with other elementary components and their basic
compositions (such as MAC blocks) and developing user-
friendly interface.

ACKNOWLEDGMENT

This work was supported by Czech Science Foundation
project 19-10137S.

REFERENCES

[1] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis
and characterization of inherent application resilience for approximate
computing,” in The 50th Annual Design Automation Conference 2013,
DAC’13. ACM, 2013, pp. 1–9.

[2] H. Jiang, C. Liu et al., “A review, classification, and comparative eval-
uation of approximate arithmetic circuits,” J. Emerg. Technol. Comput.
Syst., vol. 13, no. 4, Aug. 2017.

[3] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-inspired
imprecise computational blocks for efficient vlsi implementation of soft-
computing applications,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 57, no. 4, pp. 850–862, April 2010.

[4] V. Mrazek, R. Hrbacek et al., “Evoapprox8b: Library of approximate
adders and multipliers for circuit design and benchmarking of approxi-
mation methods,” in Proc. of DATE’17, 2017, pp. 258–261.

[5] L. Sekanina, Z. Vasicek, and V. Mrazek, Automated Search-Based
Functional Approximation for Digital Circuits. Springer International
Publishing, 2019, pp. 175–203.

[6] J. F. Miller, Cartesian Genetic Programming. Springer-Verlag, 2011.
[7] Z. Vasicek and L. Sekanina, “Evolutionary approach to approximate dig-

ital circuits design,” IEEE Transactions on Evolutionary Computation,
vol. 19, no. 3, pp. 432–444, June 2015.

[8] ——, “Evolutionary design of approximate multipliers under different
error metrics,” in 17th International Symposium on Design and Diag-
nostics of Electronic Circuits Systems, April 2014, pp. 135–140.

[9] R. Hrbacek, V. Mrazek, and Z. Vasicek, “Automatic design of approx-
imate circuits by means of multi-objective evolutionary algorithms,” in
Proc. of DTIS’16, 2016, pp. 239–244.

[10] M. Ceska, J. Matyas, V. Mrazek, L. Sekanina, Z. Vasicek, and T. Vojnar,
“Approximating complex arithmetic circuits with formal error guaran-
tees: 32-bit multipliers accomplished,” in Proc. of 36th IEEE/ACM Int.
Conf. On Computer Aided Design. IEEE, 2017, pp. 416–423.

[11] Z. Vasicek, V. Mrazek, and L. Sekanina, “Towards low power approx-
imate dct architecture for hevc standard,” in Proc. DATE’17, 2017, pp.
1576–1581.

[12] V. Mrazek, S. S. Sarwar et al., “Design of power-efficient approximate
multipliers for approximate artificial neural networks,” in Proc. of
ICCAD’16. ACM, 2016, pp. 81:1–81:7.

[13] V. Mrazek, M. A. Hanif, Z. Vasicek, L. Sekanina, and M. Shafique,
“autoax: An automatic design space exploration and circuit building
methodology utilizing libraries of approximate components,” in Pro-
ceedings of the 56th Annual Design Automation Conference 2019, ser.
DAC ’19. New York, NY, USA: ACM, 2019, pp. 123:1–123:6.


