Fault, an Open Source DFT Toolchain

Mohamed Gaber, Manar Abdelatty, and Mohamed Shalan

The American University in Cairo, EGYPT

Abstract — The continuous reduction in feature size in-
creases the probability that a manufacturing defect in the inte-
grated circuit will result in a faulty chip. Design for Testability
(DFT) makes it possible to detect all faults in a circuit after fab-
rication; and hence reducing the time and cost associated with
chip development. However, despite the maturity of the DFT
field, there is no practical open source DFT solution. In this pa-
per, we introduce Fault, an open source toolchain for automatic
test pattern generation (ATPG), scan insertion and scan chain
testing.

keywords: VLSI, EDA, DFT, ATPG, Scan Insertion, Scan
Chain, JTAG, Open Source, Fault, Defect, Stuck-at

Introduction

However circuits are designed to be error-free, manufactured
circuits may not function correctly because the manufactur-
ing process is not perfect. Defects, such as short circuits and
open-circuits, may be introduced. Because of that, testing
manufactured circuits became a must-do step. It is crucial to
identify faulty circuits as early as possible. Because when the
faulty chip is soldered on a printed circuit board, the cost of
fault remedy would be multiplied by ten. And this cost fac-
tors continues to apply until the system has been assembled
and packaged and then sent to users.

Testing of digital logic involves the application of test
data (test pattern/vector) to the Device Under-Test (DUT)
and the comparison of the resulting response to the expected
one. Manufacturing defects tend to alter the circuit behavior;
hence, faulty circuits produce incorrect results. Test pattern
generation is a complex process with three main aspects: the
cost of test generation (generation time), the cost of test ap-
plication (testing time) and the quality of test (coverage).

The many possible issues that may arise during the fab-
rication of a hardware design requires almost any hardware
written to be designed with testability in mind. To this extent,
standards have been introduced to assist with automated test-
ing, most famously IEEE 1149.1 (1). There are a number of
tools that are able to generate the infrastructure necessary for
that standard, but there is a surprising dearth of open source
utilities for such.

The importance of a robust DFT tools in an open source
digital design flow cannot be understated. The EDA research
team at the American University in Cairo has thus endeav-
ored to create such a tool: one that leverages existing open
source tools such as the Yosys Open SYnthesis Suite (2), the
Icarus Verilog simulator (3) and Pyverilog (4) to deliver a
cohesive experience encompassing synthesis, netlist cutting,
test pattern generation, compaction all the way to scan chain

stitching and verification. We call this toolchain Fault. Fault
is designed and implemented to support standard EDA for-
mat; hence, it can be integrated into any industrial RTL to
GDSII flow.

Fault Toolchain Design

Fault operates on RTL designs in Verilog and is made up
of five components: synth, cut, PGen, compact, and
chain. The Verilog RTL is first synthesized into a flatten
netlist using synth. Then, the design is converted into pure
combinational design using cut by cutting out the flip flops
and replace them by input and output ports. This modified
netlist is used for the ATPG process done by PGen. The
generated test vector set is then compacted by compact. Fi-
nally, scan chain insertion is done by chain.

Synth is a synthesis script based for Yosys that synthe-
size and map Verilog RTL design into a flattened netlist that
can be used with the subsequent tools of the Fault toolchain.
Fault is compatible with any flat netlist, of course, so this step
can be skipped if a user would elect to run their own synthesis
script.

Cut removes the flip flops from the netlist and converts
the design into pure combinational design. The new netlist
has an extra input port for every removed flip-flop output pin.
Also, it has an extra output port for every removed flip-flop
input pin. This step is essential for automatic test pattern
generation.

PGen is an automatic test pattern generator (ATPG) for
stuck-at faults. Main uses pseudo-random ATPG coupled
with fault simulation. This is a simpler alternative to algorith-
mic methods such as PODEM and D algorithms. Algorith-
mic methods require "path sensitization" which makes them
complex to handle netlists mapped using any arbitrary stan-
dard cell library. In PGen, test patterns are pseudo-randomly
generated, and a testbench is generated for each test pattern
that compares a golden model to a model where fault sites
are progressively simulated using Verilog force statements.
The outputs of both models are compared, and any fault site
that can be marked as detectable using said test pattern is sent
back to Fault to be marked as covered. Final coverage is then
output to a file in a JSON format.

Compact reduces the count of the test vector set using
static compaction. Compaction starts with two sets: the ini-
tial test vector set, generated by the ATPG, along with its cov-
ered faults and an empty compacted test vector set. Firstly,
test vectors that cover essential faults, covered by only one
vector, are added to the compacted set. Then, the test vec-
tor with the highest number of detectable faults is inserted
in the compacted set and the faults covered by that vector

Table 1. Benchmark Results.

LFSR Swift
Benchmark Gate Count Coverage Run-time TVCount Compacted CPercent Coverage Run-time TVCount Compacted CPercent
(%) (sec) (%) (%) (sec) (%)
c6288 2348 99.99 23.51 100 26 74.00 99.97 2391 100 25 75.00
c5315 1388 98.09 9.8 100 49 51.00 98.40 9.49 100 52 48.00
c5315a 1332 97.75 9.7 100 46 54.00 98.50 9.71 100 46 54.00
¢3540 982 95.32 20.46 300 58 80.67 97.63 20.07 300 65 78.33
s15850a 2792 90.32 119.63 400 91 77.25 90.28 121.83 400 88 78.00
$5378a 1030 92.32 35.04 400 71 82.25 94.74 33.84 400 79 80.25
s1488 610 96.60 12.98 300 57 81.00 95.23 8.51 200 52 74.00
s1423a 481 97.74 8.29 200 37 81.50 95.41 8.42 200 34 83.00
s1423 481 95.54 4.45 100 34 66.00 95.48 9.01 200 31 84.50
APU 5121 83.59 175.86 400 114 71.50 86.017 178.32 400 114 71.50
zigzag 4580 99.99 92.32 100 22 78.00 99.99 95.1 100 22 78.00
RGB2YCBCR 3568 91.40 117.33 400 62 84.50 91.89 118.97 400 66 83.50
cpu6502 2395 92.70 71.99 400 113 71.75 91.83 71.58 400 115 71.25
can 2248 91.73 73.74 400 120 70.00 90.75 75.15 400 112 72.00
cic_interpolator 1026 98.18 31.89 400 23 94.25 98.53 23.46 300 23 92.33

are removed from the initial test vector set. This process is
repeated until the compacted set covers all detectable faults.
The compacted set coverage is then output to a file in a JSON
format. This step is important for reducing the cost of testing.
Chain performs scan-chain stitching. Using Pyverilog,
a scan-chain is constructed through a netlist’s D-flipflops and
on the netlist’s ports, going input, internal flipflops, then out-
put. Chain offers an option to resynthesize after stitching the
scan chain, but again, a user may elect to run their own syn-
thesis on the stitched model. Additionally, chain offers an
option to verify its own scan chain to ensure its integrity.

Implementation

Fault is implemented in the Swift Programming Language
(5). The reason for this is that a statically-typed, safe, native
language that could also interact with and use Python-based
libraries was required, and the team leadership is quite expe-
rienced in the Swift programming language.

Fault thus interacts with Pyverilog directly via the Swift-
Python interoperability developed by Google Inc. as part of
their Swift for Tensorflow project (6), and interfaces with
Yosys and Icarus Verilog via a shell interface: parsing their
outputs via stdin, and stdout. All the glue logic is imple-
mented in pure Swift, which greatly contributes to the swift-
ness and stability to the tool in comparison to developing the
toolchain in pure Python.

Unfortunately, the interoperability itself has been known
to introduce the occasional issue as Python struggles against
Swift’s ownership model: namely, Swift’s references counter
vs Python’s. One example is that using Python in a multi-
threaded context from Swift has been known to make the
application crash. This is a problem as the simulations are

indeed multi-threaded: the Python components were isolated
for such a reason.

Additionally, a more practical problem is that setting up
the Swift language, let alone Swift/Python interop, is rather
cumbersome especially on Linux, where cloud infrastructure
typically lies. To alleviate these issues, lightweight Docker
images available for instant deployment were created so one
may run Fault reliably and without configuration issues.

Benchmarks

Fault’s performance was evaluated on a selected number of
benchmark, open-source, designs encompassing sequential
and combinational element. In order to study the perfor-
mance of different pseudo random number generators, the
test vector set was generated twice using two different ran-
dom number generators; swift’s system random number gen-
erator and a 32-bit linear feedback shift register (LFSR).

Table 1 shows the experiment results on the benchmarks
including the ISCAS 85 combinational and the ISCAS 89 se-
quential benchmark circuits. The table shows the gate count,
final coverage, run time, the count of both the initially gener-
ated test vector set and the compacted set and the compaction
percentage. The benchmark designs were synthesized using
the osu035 standard cell library. For the designs containing
sequential elements, flip-flops were exposed as ports using
the cut option. The number of test vectors was increased in-
crementally to reach a minimum coverage of 95% , but if the
number of the generated test vectors hit the specified count
ceiling , the simulation settled for the ceiling coverage.

The experiments were carried out on the Precision 5820
workstation using Fault’s Docker image on Windows host
with an allocated memory of 13568 MB and 12 CPUs.

Conclusion and Future Work

We believe we have developed a rather competent tool for
DFT. To our knowledge, Fault is the only open-source DFT
solution which can be applied to HDL designs. For future
work, we are planning to extend Fault to introduce transition
delay faults. Also, Fault will be updated to produce output
files understood by commercial ATE. Finally, we are going
to evaluate different pseudo-random test pattern generation
algorithms to, concurrently, improve fault coverage and re-
duce the generation time.

Acknowledgment

Fault’s development has been assisted by the Cloud V
project, a sister project at the American University in Cairo,
and its code and Docker container are hosted in Cloud V
repositories.

The Fault repository and complete source code are avail-
able at https://github.com/Cloud-V/Fault, as
well as the benchmarks used for testing. The Benchmarks file
contains the results table for all the benchmark designs. Us-
age instructions are available in the Readme file. It has been
tested to work with Apple macOS and GNU Linux (Ubuntu
18.04). Due to the complicated set of dependencies required
to run the Fault toolchain, a Docker image is available for use
which works universally.

References

1. leee standard for test access port and boundary-scan architecture. |EEE Std 1149.1-2013
(Revision of IEEE Std 1149.1-2001), pages 1-444, May 2013. doi: 10.1109/IEEESTD.2013.
6515989.

2. Clifford Wolf. Yosys open synthesis suite. http://www.clifford.at/yosys/.

. Stephen Williams. Icarus verilog. http://iverilog.icarus.com.

4. Shinya Takamaeda-Yamazaki. Pyverilog: A python-based hardware design processing
toolkit for verilog hdl. In Applied Reconfigurable Computing, volume 9040 of Lecture Notes
in Computer Science, pages 451-460. Springer International Publishing, Apr 2015. doi:
10.1007/978-3-319-16214-0_42.

5. Chris Lattner and Apple Inc. The swift programming language. https://swift.org/.

6. Google Inc. Swift for tensorflow. https://www.tensorflow.org/swift.

w

https://github.com/Cloud-V/Fault
http://www.clifford.at/yosys/
http://iverilog.icarus.com
https://swift.org/
https://www.tensorflow.org/swift

