Puffery: An Open-Source Benchmark Tool for PUFs

Hunter Nichols and Matthew R. Guthaus
Computer Science and Engineering
University of California Santa Cruz

Santa Cruz, CA 95064
{hznichol,mrg} @ucsc.edu

Abstract—As concern over security continues to grow within
the hardware community, the ability to openly test and analyze
these systems is a necessary requirement. An open-source solution
encourages a wide range of perspectives and allows thorough
inspection of possible faults within systems. Physically Unclonable
Functions (PUFs) are hardware primitives which act as digital
fingerprints. While existing in the literature for quite some time,
their evaluation has no consensus and flaws are constantly found
in state of the art designs. This work introduces Puffery, an
open-source tool to evaluate PUFs of different designs and build
a common, extensible standard for these security devices. Puffery
maintains a collection of tests to evaluate PUFs such as Hamming
Distance for reliability and learning attacks for vulnerabilities.

I. INTRODUCTION

Meltdown [1] and Spectre [2] are recently discovered hard-
ware vulnerabilities that affect modern processors. Before
that, Row Hammer [3] was another hardware vulnerability
that allowed for interference through DRAM cell coupling.
Vulnerabilities are less common in hardware compared to
software but their impact can be much more devastating
as fixes in active hardware are near impossible. Issues will
continue to appear as long as hardware continues to grow
and improve, and we currently rely on careful observers and
designers to find vulnerabilities before they can be utilized
maliciously.

One hardware security primitive that has been actively
explored in the literature is Physically Unclonable Functions
(PUFs) [3] [4]. There is a general consensus on several factors
that determine the quality of PUFs but no standard exists and
each implementation applies a slightly different analysis.

PUFs represent a digital fingerprint for a circuit and cannot
be reliably re-created even when knowing the exact hardware
used to implement the PUF. This allows for each device to
be authenticated by a centralized entity which has accepted
the PUF as a known device. The secret key is inherent to the
device, so the key is never transmitted and programmed within
the device reducing any possibility it can be apprehended by
an attacker.

At a high-level, a PUF represents a function which takes
in an input challenge and outputs a response. Each PUF
maintains a set of challenge-response pairs (CRP). There are
two separate classes of PUFs: weak and strong. A weak
PUF only maintains one or several CRPs and serves as a
replacement to secret key storage e.g. the key is created by
the devices rather than programmed externally. A strong PUF

maintains a large amount of CRPs such that a subset would
be used to authenticate the device.

PUFs are graded on a variety of aspects depending on
implementation, but reliability and vulnerability to attacks are
key traits. As PUFs are hardware based, reliability is important
in every implementation. Ideally, a PUF should be consistent
with its output and always return the same CRPs independent
of the external conditions. The reality is all implemented PUFs
will have varying CRPs. The foundation which determines
the differences between devices are the transistor variations
which eventually determine if a response bit outputs to 1 or
0. In many cases, noise or circuit conditions can overpower
the effect of the variation leading to different responses with
the same challenge. Hamming Distance (HD) is a common
metric to measure the reliability and is also used as a metric
to distinguish distinct PUFs.

Strong PUFs which have a large set of CRPs are mainly
at risk of Machine Learning (ML) algorithms being able to
accurately produce CRPs from a given device. A key idea
behind strong PUFs is that an attacker cannot extract enough
CRPs within a reasonable amount of time to be able pose
as an authentic PUF. However, it has been demonstrated
that many strong PUFs are vulnerable to learning attacks
where a subset of CRPs can train an ML model to replicate
the PUFs. This is due to most strong PUF implementations
demonstrating correlation between challenges and responses.
Some theoretical PUF papers doubt the ability to fully guard
against learning attacks [5], so guarding access to the CRPs
has been recommended in some cases. This is an easily
exploitable vulnerability which can be replicated with a variety
of open-source machine learning packages. This issue poses a
major hurdle for the security of strong PUFs.

Literature of PUFs use these two categories as the most
common analysis, however, every PUF implementation is
different and uses its own set of tests. A common platform
is needed to grade these devices to define and allow free
comparison. An open-source development allows for two ad-
vantages. First, anyone can see the benchmarks and tests being
performed on the PUFs, and second, anyone can contribute,
discuss, and add to the project to improve it for future designs.
Many PUFs which claim to be resistant to learning attacks are
often found vulnerable at a later date, so updating the standard
is required to reform to the ongoing security arms race between
attackers and defenders.

We present the Puffery testing benchmarks as a beginning



D g e gEas.)

% . Ty p
1.0
= i 0.8
B fpm 0.6
! 0.4
0.2
%;i_ s 0.0
Sasi Saisle = - - '

Fig. 1: Each cell of the PUF represents a probability, p, of the
cell powering to a logical “1”. Some cells can appear random
and are compensated using averaging techniques [7].

to evaluate PUFs under various metrics depending on type and
design. Puffery debuts with evaluation of a strong and weak
PUFs with learning attacks and Hamming Distances tests,
respectively. All tests are in Python with widely accessible
packages. Both PUFs were generated using OpenRAM [6].

II. PUF OVERVIEW

There are many implementations that focus on other design
aspects such as low-cost or low-power, but any PUF can be
generalized into the weak or strong categories. Weak and
strong PUFs can tested in different ways, but in this section,
a few representative tests and reasoning for these tests will be
presented.

A. Weak PUF Analysis

Weak PUFs are categorized as only having one or several
CRPs. An SRAM PUF is a common implementation of a weak
PUF as the start-up values of the SRAM cells are determined
by the variation differences in the cross-coupled transistors
and are usually uncorrelated from device to device. There are
other types of weak PUFs, but SRAM PUFs are the most
common and considered the easiest to incorporate as it can
be implemented with standard SRAM. As shown in Figure 1,
a single SRAM may be separated into multiple PUFs. Each
bit has a probability to startup as a “0” or “1” which is
dependent on pre-existing variation, environmental factors, and
noise sources. An SRAM PUF may use the address to separate
different PUF fingerprints, or the challenge can be used as the
input for the address as well.

The main metric for weak PUFs is to measure the intra-
HD and inter-HD. The intra-HD represents the difference in
response bits on separate measurements. Variations within
the bitcell may cause the cell to be neutrally skewed and
be susceptible to noise. Each bitcell will have random skew
with cells skewed towards “0” or “1” being more reliable
and consistent start-up values. Weak PUFs requires reliability

Latch

X[Cl] X[1] X[126] X[127]
Fig. 2: An example arbiter PUF with 128 challenge bits and
a single response. Structure can be replicated for as many

response bits as desired [10].

analysis with Hamming distances in order to guarantee a
correct authentication with the PUF. The intra-HD variance
must not be large enough to be confused with a logically
separate devices.

Inter-HD is the Hamming distance of separate PUFs. A
perfect PUF would have an intra-HD equal to O and an inter-
HD equal to half the number of response bits. Most implemen-
tations report an intra-HD equal to 5-20% of total response bits
which can heavily vary by implementation and fabrication. To
account for this small error, an average of several start-up
values are averaged together to create a known fingerprint and
compared with latent fingerprints from subsequent startups.
Hamming distance is one of the most common metrics to
measure the reliability of a PUF but error correction can also
be employed to improve their reliability [8].

B. Strong PUF Analysis

Strong PUFs have many CRPs, and a key property is
the area of the design should be, at most, linear with the
total challenge bits such that the total challenges increase
exponentially with the area. Otherwise, it would be difficult
to efficiently create a large enough set of CRPs to ward
off attackers. Using an SRAM to implement a strong PUF
would be inefficient unless additional circuitry is added [9].
An arbiter PUF is a simple strong PUF built with cascading
multiplexers connected to a flip-flop as shown in Figure 2. The
input challenge determines the path through the MUXes, and
a competing delay between two signals determines the final
output on the flip-flop. This design has known vulnerabilities
to learning attacks which has spawned different modifications
and theory for resilient strong PUFs.

Learning attacks use ML models to find correlation in bits
to predict unknown CRPs. The arbiter PUF output depends
on a sum of delays, so a model can attempt to determine how
each challenge bit affects the output. Given enough CRPs, it
is easy for many ML models to achieve over 90% accuracy
through training the models on known CRPs. Most learning
attacks can be developed using commonly available open-
source packages.

The arbiter PUF is known to be susceptible to learning
attacks [10] as each stage produces a randomized delay, but
the final output is dependent their linear summation. Linear



0.4 4

e
w
L

Probability

o
[N
L

0.1

0.0 -

T T T T
0 5 10 15 20 25 30 35 40
Hamming Distance

Fig. 3: The intra-Hamming Distance (blue) and inter-
Hammering Distance of a 64-bit SRAM PUF (red). As long
as the intra-HD and inter-HD are distinct then the device can
be identified.

system analysis can be used to gather information about the
PUF and effectively model the PUF even if only given a small
amount of CRPs. However, many standard machine learning
models can also easily learn the PUF without understand the
internals mechanics behind its operation.

Support Vector Machines and Logistic Regression are two
popular ML models used to characterize the PUF against
learning attacks. Each model attempts to find patterns in the
challenges and responses using supervised learning techniques.
ML is one of the fastest growing areas of research, and so, a
copius amount of open-source software and packages have
been recently released to support exploration. TensorFlow,
PyTorch, and scikit-learn are a few examples that all have
easily available Python packages with varying amounts of
abstraction. With only a few lines of code, a model built
with scikit-learn can learn any strong PUF with high accuracy
depending on the implementation. The simplicity of this attack
makes it an important metric that any strong PUF should be
compared against.

There are nearly an unlimited amount of model configura-
tions and hyper parameters that can be configured in order to
tune the model to be more accurate, but in most cases, more
well known and tested ML models are primarily used. PUF
analysis is not at the point where a single model dominates all
others. Therefore, the literature tends to use varying packages
and models to explore which models are the most effective.
Puffery uses scikit-learn as it represents bundle of common
models which are easy to use. Utilizing Tensorflow could allow
any model to be adapted, but that is left for a future update
as the customization is not needed at this time.

III. RESULTS

Puffery is a set of scripts implemented in Python. The
language has support from many open-source projects, and

Prediction Accuracy
e
@
<

N\

—8— Logistic Regression
—— Decision Tree

—&— Random Forest
—+— Support Vector Machines
—#— K-Nearest Neighbors
—&— Two-Class Bayes

260 460 660 360
Size of Training Set
Fig. 4: Accuracies of different models over varying training

data. The models average an accuracy over 80% while only
knowing less than 1% of all possible CRPs.

specifically, Puffery makes use of the scikit-learn packages
for strong PUF analysis and Matplotlib for displaying the
results. Puffery is released publicly on Github! and is in active
development. To use the tools, you only need to provide the
CRPs and indicate in the scripts where the data is located.

OpenRAM was modified to generate data for weak and
strong PUFs. An SRAM PUF was created to represent the
weak PUF while an arbiter PUF module was added and char-
acterized in OpenRAM to represent the strong PUF. Variation
was applied using HSPICE variation options to adjust the
voltage threshold of each transistor based on its area. Designs
and simulations were created in FreePDK45 technology.

A. Hamming Distance

For weak PUFs, Puffery has a script to display the intra-HD
and inter-HD of a PUF. Puffery provides data generated from a
64-bit SRAM as its weak PUF. Inter-device data was generated
using the same design but with different HSPICE seeds to
change the variation. Intra-device data was generated with a
single seed but the supply voltage was varied between 80%-
100%, and temperature was varied between 0-100 Celsius.
Figure 3 displays the plot generated by Puffery with this data.
The plot can be generated with any available data as long as
it has a similar format to the existing example.

B. Hamming Distance

Puffery evaluates PUF CRPs on six different binary clas-
sification models provided by scikit-learn: logistic regression,
support vector machines, k-nearest neighbors, decisions trees,
random forest, and a two-class Bayes model. The current
strong PUF evaluation uses these modules and performs
training and testing on various amounts of the available
data provided. This is one of the most useful metrics as is

Uhttps://github.com/VLSIDA/puffery



demonstrates how accurate the models get even with limited
data. The data provided by Puffery was generated by a 16-
bit challenge, 1-bit output arbiter PUF at nominal conditions.
Rather than use a flip-flop, both paths were measured and the
response was determined post-simulation based on the delay.
Figure 4 displays the plot generated by Puffery of prediction
accuracy with different models. There is a clear accuracy
divide between the models with logistic regression reaching
as high as 90% without including any internal information
about the PUF.

IV. CONCLUSION

Security in hardware is difficult task and there will be no
one solution to prevent all possible exploits in the future. PUFs
are just one technology that helps embed safety within the
hardware that is performing authentication. Puffery presents
an open analysis for PUFs and is almost entirely done with
open-source tools. The tests represent a single link in the chain
to help make hardware security an open-source effort and elim-
inate the need to meticulously reverse-engineer vulnerabilities.

REFERENCES

[1] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in 27th USENIX
Security Symposium (USENIX Security 18), 2018.

[2] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in 40th
IEEE Symposium on Security and Privacy (S&P’19), 2019.

[3] M. Seaborn and T. Dullien, “Exploiting the dram rowhammer bug to
gain kernel privileges,” Black Hat, vol. 15, 2015.

[4] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in 2007 44th ACM/IEEE
Design Automation Conference, June 2007, pp. 9-14.

[5] A. Vijayakumar, V. C. Patil, C. B. Prado, and S. Kundu, “Machine
learning resistant strong puf: Possible or a pipe dream?” in 2016
IEEE international symposium on hardware oriented security and trust
(HOST). 1EEE, 2016, pp. 19-24.

[6] M. R. Guthaus et al., “OpenRAM: An open-source memory compiler,”
in ICCAD. New York, NY, USA: ACM, 2016, pp. 93:1-93:6.

[7] D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-up sram state as
an identifying fingerprint and source of true random numbers,” I[EEE
Transactions on Computers, vol. 58, no. 9, pp. 1198-1210, 2008.

[8] M.-D. Yu and S. Devadas, “Secure and robust error correction for
physical unclonable functions,” IEEE Design & Test of Computers,
vol. 27, no. 1, pp. 48-65, 2010.

[9] D. E. Holcomb and K. Fu, “Bitline puf: Building native challenge-
response puf capability into any sram,” in Cryptographic Hardware and
Embedded Systems — CHES 2014, L. Batina and M. Robshaw, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 510-526.

[10] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical unclon-
able functions and applications: A tutorial,” Proceedings of the IEEE,
vol. 102, no. 8, pp. 1126-1141, 2014.



