
Toward a digital flow for asynchronous VLSI
systems

Samira Ataei†, Jiayuan He∗, Wenmian Hua†, Yi-Shan Lu∗, Sepideh Maleki∗, Yihang Yang†,
Keshav Pingali∗, and Rajit Manohar†

∗University of Texas at Austin
{yishanlu,hejy,smaleki,pingali}@cs.utexas.edu

†Yale University
{samira.ataei,wenmian.hua,yihang.yang,rajit.manohar}@yale.edu

Abstract—We are developing an open-source EDA flow for
asynchronous logic. Key parts of the flow are implemented
using the Galois system for parallelization to reduce run-time
requirements. We report on the current state of this flow, and
some of the open issues that we are exploring in order to improve
the overall quality of results.

I. INTRODUCTION

Asynchronous digital circuits provide a method for imple-
menting digital computation without the need for a global
clock signal to synchronize all operations. The absence of a
global clock is a significant enough change that conventional
synchronous design automation tools are insufficient to design
correct asynchronous circuits without major manual effort.

To address this challenge, we have been building an open-
source design automation flow for asynchronous circuits.
The flow we are creating leverages over three decades of
experience in the asynchronous design community in man-
ual design and fabrication of chips that exhibit state-of-the-
art power/performance. The approach starts with the circuit
specified using a programming language called “Communi-
cating Hardware Processes (CHP)” which is a combination
of Hoare’s classic CSP [3] and Dijkstra’s guarded command
language [1]. The language is a sequential programming
notation augmented with communication channels that support
send, receive, and probe operations. Key design decisions are
made by re-writing the CHP program into a massively parallel
collection of “small” CHP programs. This decomposition of
the original program is where all micro-architectural decisions
(e.g. pipelining, resource usage, computation/storage trade-
offs, etc.) are made. Many systematic techniques have been
developed for this purpose, including process decomposition
and projection [9, 10].

The final CHP program is elaborated into operations on
Boolean-valued variables, and finally these programs are syn-
thesized into a collection of CMOS gates. After this step,
electrical optimizations such as gate sizing and buffer insertion
can be applied. Each gate has to be converted into a VLSI
layout (a “cell”), and then these cells have to be placed
and routed. In support of the flow, we also plan to develop
formal equivalence checking tools across different levels of
abstraction (e.g., CHP versus gates) using a combination

of traditional model checking and inverse synthesis, which
attempts to “undo” steps in the design flow [7, 8].

In this paper, we describe the progress we have made over
the past year in developing design automation support for
asynchronous circuits. We focus on the “gates to GDS2” part
of the flow, where a gate-level netlist has to be translated into
physical geometry prior to tape-out. The modular nature of the
asynchronous design flow makes it amenable to parallelization.
Module-level parallelism is easy to achieve, and the higher
complexity of some of the design automation steps (relative
to synchronous design) requires parallelism to speed up the
design process. We are leveraging the Galois framework as a
way to simplify the development of highly parallel EDA tools.

II. EDA FOR ASYNCHRONOUS VLSI SYSTEMS

Just like there are many synchronous logic families that each
have their benefits and drawbacks, there are a large number
of different asynchronous logic families as well. While they
have significant differences and provide differing points in the
power/performance/area design, space, they have similarities
and differences when compared to conventional synchronous
logic. In what follows, we assume the target implementation
technology is CMOS.

Both synchronous and asynchronous circuits are translated
to a collection of CMOS-implementable gates. These gates
are implemented with transistors used as switching networks.
However, asynchronous circuits use more general gates than
those found in standard commercial cell libraries. As an
example the C-element, a commonly used asynchronous state-
holding gate, is absent from cell libraries.

Calculating gate delays and translating gates and intercon-
nections into a physical VLSI implementation is the same in
both synchronous and asynchronous circuits, since they both
use the same (CMOS) implementation technology with the
same manufacturing rules. Electrical simulations using SPICE
simulation is also the same, since the circuit simulation uses
the same electronic components/devices in both asynchronous
and synchronous logic.

However, there are two major differences in performance
computation. Synchronous logic implemented with flip-flops
and combinational logic concerns itself with the maximum



Design

Expanded 
design

Technology 
mapping

New cell 
generation

Characterizer

Placement

Asynchronous static 
timing engine

Routing

Floorplan

Layout 
finishing

.lib 

.act 

.spice 

.lef 

.rect
.act 

.act .def 

.def 

.gds

Layout editor

.lef 

.gds

.v 

.v 

.def 

.spef .act 

translation to 
proprietary 
commands

.def 

cell layout

Fig. 1: Overview of the digital design flow for asynchronous
circuits that is under development. Gray boxes denote existing
tools that we leverage. Orange boxes are the ones where we
implement parallel algorithms to improve run-time.

and minimum delay through the combinational logic, and
the setup and hold times of state-holding flip-flops. Instead,
asynchronous circuits’ performance is governed by the delays
of cycles of gates. Hence, timing analysis is quite different
in the asynchronous domain. Also, different asynchronous
circuit families have different timing requirements for correct
operation. Therefore, timing analysis tools for asynchronous
logic differ significantly from those needed for synchronous
logic. This impacts gate sizing, buffer insertion, and placement
and routing—in other words, the physical implementation
flow.

The flow we are creating includes a design language called
ACT (for asynchronous circuit toolkit). This is a hierarchical
design language that includes communication channels as
first-class objects. The language supports representing circuits
at multiple levels of abstraction, including CHP, gate-level,
transistor-level descriptions, and abstract layout/geometry. By
using an integrated language, we preserve the relationships
between different levels of abstraction in the design throughout
the design flow. Design tools can be viewed as transformations
in the ACT framework. For example, logic synthesis elaborates
a CHP-level description of a module into a gate-level descrip-
tion of the same module without changing its interface. This
language is the result of an evolution over almost three decades
of research in asynchronous design grounded in the implemen-
tation of over a dozen asynchronous VLSI chips ranging in
complexity from 0.5M transistors to 5.4B transistors, and in
technologies ranging from 0.6µm CMOS to 28nm CMOS. A
summary of the flow we are developing is shown in Figure 1.

A. Design elaboration

The ACT language permits parameterized and templated
designs. Hence, the first step in the automation flow is to
elaborate the design and create an instance of the design
corresponding to the specific parameters selected for imple-
mentation by the designer. This transformation is referred to as
expansion, and the expanded design is also represented in the
ACT framework. After the expansion of the design is complete,
it is possible to export the design into a Verilog netlist format
for ease of integration with commercial tools or other third-
party open-source tools.

B. Technology mapping and gates

The expanded design contains a hierarchical description
of the asynchronous circuit. As we have alluded to earlier,
asynchronous circuits are implemented using a wide variety
of gates. To support this using a digital flow, we have imple-
mented a gate isomorphism pass.

Given a collection of existing/known gates/cells, the gate
isomorphism pass matches the gates used by the user design
against these known cells. The known cells are specified using
the ACT language and are encapsulated in a special “cells”
namespace in ACT. If there is a gate in the user design that
cannot be found, then a new cell is added to the cells
namespace. This new cell is converted into layout using a
cell generation approach we have previously developed [5],
and then characterized using the Xyce open-source circuit
simulator. The characterization phase results in the creation
of a new .lib file segment for timing analysis. In addition,
.lef files are generated for placement and routing. The
geometry for the cell is created using a very simple .rect
file format, which consists of a simple list of rectangles, layer
names, and (possibly empty) labels.

Since many commercial layout tools use proprietary com-
mands/formats, we adopted this simple approach so that it
would be easy to translate the geometry generated by our
tools into scripts/commands to re-create the same geometry
within any commercial tool. As an example, our Perl script
that translates the .rect file into a script that can be used
by the magic VLSI layout editor is twenty-three lines long.

The cell layout generator is parameterized by layout design
rules that are sufficient to generate correct cell geometry
in technologies upto 28nm. We are currently examining the
necessary extensions for 14nm and below. Since the generator
is internally paramterized, we can either generate fixed height
cells (akin to commercial cell libraries), or cells that can have
variable height and width.

Note that cell layout generation and characterization is an
embarassingly parallel problem, and since we use open-source
tools for all of these steps we are not limited by licenses in
order to exploit the available parallelism.

C. Asynchronous static timing analysis

Once we have characterized gates and a design that is
mapped to a collection of pre-characterized gates, we can



perform asynchronous static timing analysis. Our timing anal-
ysis engine adopts the mathematical framework developed
by [4], as it can handle a wider class of asynchronous circuit
topologies. The approach is currently limited to asynchronous
circuits with max-causality gates, and calculates conservative
approximations in all other cases. We are currently extending
this to handle min-causality, as well as more complex cases.

Our timing analysis approach analyzes cycles of gates and
computes the cycle period of the asynchronous circuit, as well
as the timing slack for each branch in the circuit. Compared to
synchronous timing analysis, the asynchronous timing analysis
engine takes roughly two orders of magnitude more time for
designs of comparable size (in terms of gate count and net
count) for quasi delay-insensitive circuits.

To address the performance issue, we use the Galois frame-
work (summarized in the next section) to parallelize this
algorithm so as to keep the run-time manageable. In our
preliminary experiments, we obtain a speedup that is roughly
a factor of 5× to 10× for large designs by using the Galois
framework. We are currently examining other approaches to
improve the speedup further, as well as improving the accuracy
of asynchronous timing analysis.

D. Floorplanning and placement

Floorplanning is automated for larger designs by using
a hierarchical min-cut approach. Both layout space and the
design are simultaneously partitioned while keeping the ratio
of cell area to available space constant.

Each floorplanned region is then placed and routed using a
variation of existing analytical placement engines. Placement
proceeds with global placement to minimize half-perimeter
wirelength, followed by detailed placement which also at-
tempts to minimize overlaps, followed by legalization that
eliminates all overlaps. We have extended existing approaches
to legalization to handle cells with varying heights. Timing
slack computed from timing analysis is used to improve the
quality of placement, and adapt it to the requirements for
asynchronous logic. This is currently a work in progress, as
we evaluate the quality of results of our approach for a range
of asynchronous circuit families and CMOS technologies.

E. Routing

We take the .def file generated from placement and the
.lef files from cell generation and use these as inputs to a
detailed router. Currently we use the open-source qrouter
to route the placed design, but our approach is agnostic to the
choice of detailed router.

We have parallelized the FastRoute global router [14] using
the Galois framework [2]. We plan to integrate this global
router into the layout automation framework.

Our current plan is to modify the detailed router to make it
timing driven, using feedback from the asynchronous timing
analysis engine that has been developed.

III. THE GALOIS FRAMEWORK

Since circuits can be viewed abstractly as graphs and hyper-
graphs, a system for supporting the design and implementation

of a parallel EDA tool-chain can be implemented using a
framework that directly supports parallelism for graph-based
algorithms. The Galois system is one such framework, and
what is unique about it is that it exposes parallelism using the
operator formulation of algorithms [12].

The Galois system implements a data-centric programming
model (see details in [12]). Application programmers write
programs in sequential C++, using certain programming pat-
terns to highlight opportunities for exploiting amorphous data-
parallelism. The Galois system provides a library of concurrent
data structures, such as parallel graph and work-list implemen-
tations, and a runtime system. The data structures and runtime
system ensure that each activity appears to execute atomically.
In this way, the Galois system encapsulates parallelization
details and realizes performance scalability at the same time.

The Galois system has been used to implement parallel
programs for many problem domains including finite-element
simulations, n-body methods, graph analytics, intrusion de-
tection in networks [6], FPGA routing [11], and AIG rewrit-
ing [13].

For the effort we are describing, we have successfully used
the Galois framework for parallel implementations of:

• floorplanning, through a parallel implementation of hier-
archical min-cut partitioning;

• global routing, by exploting both net-level parallelism, as
well as parallel maze routing; and

• timing analysis, by implementing parallel timing propa-
gation.

IV. CONCLUSION

We presented a plan for implementing a parallelized phys-
ical design flow for asynchronous circuits. The flow supports
modular design and parallelization naturally. We believe that
this tool chain will promote chip design with clean abstractions
and fast turn-around times.

REFERENCES

[1] Edsgar W. Dijkstra. Guarded commands, non-
determinacy and formal derivation of programs. Com-
munications of the ACM, pages 453–457, 1975.

[2] Jiayuan He, Martin Burtscher, Rajit Manohar, and Ke-
shav Pingali. Sproute: A scalable parallel negotiation-
based global router. In International Conference on
Computer-Aided Design, November 2019.

[3] C. A. R. Hoare. Communicating sequential processes.
Communications of the ACM, 21(8):666–677, 1978.

[4] Wenmian Hua and Rajit Manohar. Exact timing anal-
ysis for asynchronous systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 37(1):203–216, 2018.

[5] Robert Karmazin, Carlos Tadeo Ortega Otero, and Rajit
Manohar. celltk: Automated layout for asynchronous
circuits with nonstandard cells. In Asynchronous Circuits
and Systems (ASYNC), 2013 IEEE 19th International
Symposium on, pages 58–66. IEEE, 2013.



[6] Andrew Lenharth, Donald Nguyen, and Keshav Pingali.
Parallel graph analytics. Commun. ACM, 59(5):78–87,
April 2016.

[7] Stephen James Longfield and Rajit Manohar. Inverting
martin synthesis for verification. In Asynchronous Cir-
cuits and Systems (ASYNC), 2013 IEEE 19th Interna-
tional Symposium on, pages 150–157. IEEE, 2013.

[8] Stephen Longfield Jr and Rajit Manohar. Removing
concurrency for rapid functional verification. In Proc.
2014 IEEE/ACM International Conference on Computer-
Aided Design, pages 332–339. IEEE Press, 2014.

[9] Rajit Manohar, Tak-Kwan Lee, and Alain J Martin. Pro-
jection: A synthesis technique for concurrent systems. In
IEEE International Symposium on Asynchronous Circuits
and Systems, page 125. IEEE, 1999.

[10] Alain J Martin. Synthesis of asynchronous vlsi circuits.
Technical Report CS-TR-93-28, California Institute of
Technology, 1993.

[11] Yehdhih Ould Mohammed Moctar and Phillip Brisk.
Parallel fpga routing based on the operator formulation.
In DAC ’14: Design Automation Conference, 2014.

[12] Donald Nguyen, Andrew Lenharth, and Keshav Pingali.
A lightweight infrastructure for graph analytics. In
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, pages 456–471,
New York, NY, USA, 2013. ACM.

[13] Vinicius Possani, Yi-Shan Lu, Alan Mishchenko, Keshav
Pingali, Renato Ribas, and Andre Reis. Unlocking fine-
grain parallelism for aig rewriting. In ICCAD ’18:
International Conference on Computer Aided Design,
2018.

[14] Yue Xu, Yanheng Zhang, and Chris C. N. Chu. Fastroute
4.0: Global router with efficient via minimization. 2009
Asia and South Pacific Design Automation Conference,
pages 576–581, 2009.


