
Skeletor Connector Language: Hierarchy
Specification to HDL development made easy

Ivan Rodriguez-Ferrandez1,2, Guillem Cabo1,2, Javier Barrera1,2, Jeremy Giesen1,2,
Alvaro Jover-Alvarez 1,2, Leonidas Kosmidis2,1

1Universitat Politècnica de Catalunya 2Barcelona Supercomputing Center (BSC)

Abstract—In this paper, we present Skeletor, an open-
source EDA tool which can be used in the early design phases
of large RTL designs in order to increase both individual and
team productivity and minimise programmer mistakes by
generating structures of Verilog projects from a specification.
With a single description file, Skeletor generates templates of
the main modules of a design, their correct interconnection
and the files associated with the workflow such as templates
for test benches, scripts, and headers. This is achieved with
a simple syntax similar to Verilog and C++.

Skeletor does not aim to replace any HDL but instead
offers the capability to automate repetitive tasks such as the
generation of workflow associated files or redundant code
associated with hard-typed language, while minimizing the
friction between the user and the tool.

I. INTRODUCTION

When it comes to the design of digital circuits us-
ing hardware description languages (HDL), developers
usually experience several problems. Traditional HDLs
are strongly typed and verbose, characteristics that slow
down developers’ work. On top of that, each imple-
mented module requires additional files such as test
benches, compilation and simulation scripts, header files
for parameters and constants. Most of these files contain
duplicated information which could be extrapolated from
the top file if only some small changes would be added.
In addition to the problem of overlapping information
between files, writing by hand all of them could lead to
human errors, slowing down development even further.

The idea of abstracting traditional HDL languages has
been around for a long time. High-level HDL languages
exist [1][2] and are becoming more important, especially
for FPGA development, but when considering ASIC
design, most companies prefer to stick with VHDL or
Verilog since using them doesn’t incur any loss of control
over the resultant hardware.

Our proposal aspires to become a robust automation
tool which helps to reduce as much as possible repetitive
tasks, allow for better work distribution among the team
members, improve coding style and set good coding
practices without constraining the programmer with an
additional layer of abstraction.

II. TOOL OVERVIEW

Skeletor, is an open-source EDA tool which can be
used to bootstrap large RTL projects, frequently im-
plemented by a team of several developers. In such
scenarios, the hardware product which is going to be
implemented is divided in several hardware modules,
which can be developed and tested in parallel by different
people. Usually, each module is implemented in a single
file, or it is hierarchically composed by other modules
implemented in other source files.

Figure 1. Generation of files by the Skeletor compiler.

Such a parallel development is possible by agreeing the
functionality of each module, as well as their interfaces
in order to be connected with other modules.

As shown in Figure 1, Skeletor allows the automatic
generation of all the infrastructure required for the devel-
opment and testing of the product from a specification
file. In particular, Skeletor generates templates of the
main modules of a design, their correct interconnection
and the files associated with the workflow such as
templates for test benches, scripts, and headers. This
is achieved with a simple syntax similar to Verilog
and C++. This way, it saves time from tedious module
instantiations in HDL and their error prone interconnec-
tions, as well as from the testing and infrastructure, such
as the different scripts required to launch simulations.
Consequently it increases both the individual and the
overall team productivity.

It is important to note that Skeletor does not aim
to replace any HDL, but instead to automate repetitive
tasks as the generation of workflow associated files or
redundant code associated with the use of hard-typed
languages, while minimizing the friction between the
user and the tool.

III. SKELETOR COMPILER

Skeletor is implemented as a compiler based on
Flex [3] and Bison [4][5]. This tool is intended to
generate the skeleton of Verilog projects. We define as
skeleton the set of files required in any HDL project
including Verilog files, test benches, configuration files
and scripts.

The Verilog files which are generated with our tool
do not contain logic, they only specify interconnections
between modules and instances. The generated files can



then be modified and completed by the programmer to
give to each module the required functionality.

Skeletor syntax is quite similar to Verilog. The key
idea behind it is allowing the developer to specify which
modules need to be designed and how they are going to
be connected, in a similar way that it is specified in the
top level file of any design.

A. Lexical specification

The language is composed of a small set of key-
words, which are listed in Table I along with their
brief description. Using only a few keywords was an
intentional decision to simplify and ease the usage of
the tool. Despite that, our configuration language is
expressive enough to allow describing most of the typical
interconnections found on HDL.

Lexic token Function
$$$ reg a;$$$ Verilog Code to be dumped
module Starts definition of a module
in Input of a module
out Output of a module
inout Input Output of a module
‘define Define which will be translated to Verilog
#define Define for pseudo code
#function Short description of function
#description detailed description
#coder Name of the assigned programmer
#references Documentation references for the design
wire Connection between modules
-> Assign connections between ports and wires
top Top module of the project
∼ Negation of a signal

Table I
SKELETOR CONFIGURATION LANGUAGE KEYWORDS.

Since the configuration language is based in C we also
have a lot of the standard operators and comments. The
list of the available lexicon from C is shown in the listing
of Table II.

Lexic token Function
// One line comment
/ * My comment */ Multi-line comment
+, - Sum and subtraction operand
(, ) Open and close parenthesis
";", ":", "," Punctuation
true, false True and false bool state
== Equality
!= Non-equality
<, >, <=, >= Less than, more than,

less or equal than, more or equal than
*, / Multiplication and division
= Assignation
[, ], {, } Brackets
&& And operator
|| Or operator
! Negation operator

Table II
SKELETOR CONFIGURATION LANGUAGE OPERATORS.

B. Grammar specification

In this part we are going to explain the specific
grammar of this language.

• The main structure in Skeletor is the module. All
modules are considered equal in the hierarchy, but
always one of them is marked as top, and as such
it must be specified last in the list of modules.

• Each module can have between 0 parameters and N
parameters and each one can be initialised with a

define which will be translated to Verilog or with
a define in Skeletor pseudocode which will put the
corresponding value in Verilog.

• Inside of each module are the in, out, inout defini-
tions which defines the inputs and outputs of each
individual module.

• Inside a module it is possible to call an instance of
another module and make the connection. When a
module instantiates another module, the connections
between the two must be of the same type. That is
an input can be connected only with an input and
an output can be connected only with an output.
Obviously the inout connection type can be used
for both inputs and outputs.

• Inside a module if there are multiple instances and
there is a need to connect them, the -> operator
can be used. This operator makes connection with
opposites types of connections. That is between
an input with an output and vice versa. As in
the previous case, the inout can be used without
constraints.

C. Code Conventions

We understand that each programmer or organisation
have their own preferences regarding coding conventions,
which should be consistent in a large project to enhance
readability and maintainability. In the current tool version
we only support a default set of coding rules which
is described below. However, we plan to support more
flexibility in the future.

• Inputs are suffixed with _i, while outputs are suf-
fixed with _o.
E.g.: input clk_i,

• Wires which connect two modules are suffixed with
the name of the modules that connect, an additional
comment is introduced in order to keep the infor-
mation of the signals that it connects.
E.g.: wire rdy_a_d; // wiring between rdy_o of
module a and clk_i of module d

• Defines are written in capital letters.
• Module names are in lowercase letters and with

underscores between words.
E.g.: module simple_example #(

• Parameters are written without underscores and only
the first letter of each word in capitals.
E.g.: TransAddrSize

• Project defines will be placed into a file called
"defines.vh"

• All the files have five regions: a File description,
Headers, Modules, Generated logic and Handcrafted
logic. This file structure can be seen in Figure 2.

Figure 2. Default Sections of generated Verilog files for
modules and top.



Figure 3. Code size comparison between Skeletor-generated code and the entire Verilog code of the complete processor pipeline
project of Figure 6 in terms of LOC and characters.

Figure 4. Generated files for the example of Figure 6.

D. Usage

Skeletor can be used as a command line tool for Linux-
based systems. Our code [6] has minimal dependencies
and can be compiled in any distribution.

Figure 4 shows the files generated for a simple pro-
cessor pipeline, described in Figure 6 when invoking
Skeletor with the flags -t -v -i. This means that Skeletor
creates an individual testbench for each module compati-
ble with the Verilator Verilog Simulator [7]. Skeletor can
also generate testbenches for use with Mentor Graphic’s
QuestaSim [8]. All the available flags are shown in the
Figure 5.

E. Syntax highlighting

In addition to the compiler, we provide a syntax
highlighter for the Sublime Text editor [9], which can
be seen in Figure 6. This facilitates the development of
Skeletor configuration files. Files with the extension .sk
are automatically recognized after the addition of the
syntax package. We are also planning to support other
widely used editors such as vim [10], emacs [11] and
IDEs like eclipse [12] and Visual Studio [13].

IV. EVALUATION

As an indication of the Skeletor compiler advantages,
we provide in Figure 3 a comparison between the total
amount of lines of code (LOC) and characters used to
implement the simple processor pipeline described in
Figure 6 and the compiler generated code. As we can see,
the generated code by Skeletor accounts for almost half
of the Verilog code contained in the final implementation,
which is an important step towards productivity. This is
not only because the development time is shortened, but
also due to the fact that less code to be written means
less bugs (especially due to connectivity issues between
modules) which is translated to easier debugging and
verification.

V. FUTURE WORK

The first version of the tool has been released in our
git repository [6] in May 2019, when we considered that
the tool supported the minimum set of features to be
considered useful. Since then additional features such
as support for inline Verilog insertion have been added.
Thanks to Flex and Bison, Skeletor is easily extensible.
We plan to keep improving its usability and increase its
capabilities based on the feedback received by its users.
Among the current list of future features we consider as
candidates for upcoming releases are: loops, libraries of
standard ports such as AXI, Avalon, and wishbone and
the ability to instantiate existing Verilog modules.

As a conclusion, even if currently the tool is not
entirely polished and it is still under development, it can
speed up RTL development. It can be especially useful
in several situations such as when several programmers
work in the same project, when coding conventions have
to be enforced or when new users get started with HDL
and require some additional guidance regarding workflow
and good coding style.

Currently the tool is being used in both student assign-
ments at the Universitat Politècnica de Catalunya, as well
as in research projects at the Barcelona Supercomputing
Center (BSC). We encourage anyone interested in the
project to check out our repository on [6].

ACKNOWLEDGMENTS

This work has been partially supported by the Span-
ish Ministry of Science and Innovation under grant
TIN2015-65316-P and the HiPEAC Network of Excel-
lence. Leonidas Kosmidis is also funded by the Spanish
Ministry of Economy and Competitiveness (MINECO)
under a Juan de la Cierva Formación postdoctoral fel-
lowship (FJCI-2017-34095).



Figure 5. Command line flags supported by Skeletor.

Figure 6. Example of syntax highlighting of a Skeletor description file implementing a simple processor pipeline, in the Sublime
Text3 editor.

REFERENCES

[1] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman,
R. Avižienis, J. Wawrzynek, and K. Asanović, “Chisel:
Constructing hardware in a scala embedded language,” in
DAC Design Automation Conference 2012, June 2012, pp.
1212–1221.

[2] R. Nikhil, “Bluespec system verilog: efficient, correct rtl
from high level specifications,” in Proceedings. Second
ACM and IEEE International Conference on Formal Meth-
ods and Models for Co-Design, 2004. MEMOCODE ’04.,
June 2004, pp. 69–70.

[3] V. Paxson, “Flex: The Fast Lexical Analyzer - scanner
generator for lexing in C and C++ .” [Online]. Available:
https://github.com/westes/flex

[4] R. P. Corbett, “Static semantics and compiler error recov-
ery,” Ph.D. dissertation, University of California, Berkeley.

[5] R. P. Corbett, “GNU Bison.” [Online]. Available:
https://www.gnu.org/software/bison

[6] I. Rodriguez, G. Cabo, J. Giesen, J. Barrera, A. Jover, and
L. Kosmidis, “Skeletor,” Sep. 2019. [Online]. Available:
https://github.com/jaquerinte/Skeletor

[7] W. Snyder, “Verilator and SystemPerl,” in North American
SystemC Users’ Group, Design Automation Conference
(DAC), June 2004.

[8] Mentor Graphics, “Questa Advanced Simulator.” [Online].
Available: https://www.mentor.com/products/fv/questa

[9] Sublime HQ, “Sublime Text.” [Online]. Available: https:
//www.sublimetext.com

[10] B. Moolenaar, “Vim.” [Online]. Available: https://www.
vim.org/

[11] R. Stallman, “GNU Emacs.” [Online]. Available: https:
//www.gnu.org/software/emacs/

[12] Eclipse Foundation, “Eclipse.” [Online]. Available: https:
//www.eclipse.org/ide

[13] Microsoft, “Visual Studio.” [Online]. Available: https:
//visualstudio.microsoft.com

https://github.com/westes/flex
https://www.gnu.org/software/bison
https://github.com/jaquerinte/Skeletor
https://www.mentor.com/products/fv/questa
https://www.sublimetext.com
https://www.sublimetext.com
https://www.vim.org/
https://www.vim.org/
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/
https://www.eclipse.org/ide
https://www.eclipse.org/ide
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com

	Introduction
	Tool Overview
	Skeletor compiler
	Lexical specification
	Grammar specification
	Code Conventions
	Usage
	Syntax highlighting

	Evaluation
	Future Work
	References

