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ABSTRACT
In this paper, we extend the ideas from LGraph to pro-
pose a new intermediate representation(IR) called Lan-
guage Neutral Abstract Syntax Tree(LNAST) to sup-
port the Live Hardware Development(LiveHD) frame-
work. The LiveHD framework focuses on providing live
feedback to small changes made in the hardware design
using LGraph as the unified VLSI data model. LNAST
offers a three-fold benefit to the LiveHD flow. First, it
acts as a bridge for the LiveHD flow to interface with
different HDLs at the front end. Second, it generates
multiple HDL/C++ code from LGraph at the backend.
When it is complete, LNAST will support Verilog, Sys-
temVerlilog and other modern HDLs like Chisel/FIR-
RTL and Pyrope, we also launch a plan to support HLS.
Third, the custom IR helps to accelerate the front-end
translation from HDLs to LGraph.

1. INTRODUCTION
The hardware development cycle is prolonged and te-

dious, compared to the faster design turnaround time of
the software development model. In industry, there is a
long-standing problem of hardware designers spending
hours or even days to wait for the entire design flow to
complete. Inspired by the state-of-art incremental syn-
thesis techniques [15, 16], we started to build a “live”
hardware development flow called LiveHD. The ulti-
mate goal of LiveHD is to provide the design feedback
in a few seconds.
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Figure 1: Current LiveHD flow.

LGraph [14] provides the foundation to achieve the
fast design feedback goal of LiveHD. It is a unified VLSI
data model with a focus on building agile infrastruc-
tures for LiveHD. Figure 1 depicts the current LiveHD
flow. LiveHD integrates LGraph with Yosys [20] for
design elaboration, with ABC [4] and Mockturtle [19]
for technology mapping and synthesis, and with Open-
Timer [8] for timing analysis. LGraph uses memory
maps to support rapid loading/unloading of the design
from the disk. Thus, it has a smaller read and write
times, and this avoids the need to re-parse the netlist
repeatedly between individual stages in LiveHD.

In the current LiveHD framework, we found three
bottlenecks which could potentially hinder our goal in
achieving live feedback. First, LiveHD uses Yosy to in-
terface System Verilog and genereate an internal graph-
like representation called RTLIL [20]. A translation
layer converts the RTLIL to LGraph. Besides tradi-
tional HDLs like Verilog, SystemVerilog, and VHDL,
there are many modern, open-source, active, and up-
coming HDLs in the hardware design community like
Chisel/FIRRTL [3,9] and Pyrope [17,18]. The transla-
tion pass must convert these modern HDLs into LGraph
to extend the usability of LGraph beyond the tradi-
tional HDLs. The reality is that the translations have
many similarities across HDLs, and care must be taken
to avoid code replications.

Second, the current LGraph-Yosys interface takes sev-
eral minutes to elaborate a large design with millions of
gates. This long translation time impedes our goal of
getting live feedback. The multi-layer translation in the
LGraph-Yosys interface contributes to this delay. To
begin with, the Verilog/SystemVerilog AST translates
to Yosys RTLIL, followed by the Yosys RTLIL proc
command 1 and the translation ends with generation of
LGraph. A translation interface with minimal overhead
is needed to accelerate the front end.
Third, LiveHD aims to support both synthesis and

simulation. To do so, it has to convert the high-level
HDL code to support synthesis and generate fast C++
for simulation(similar to what Verilator [2] does). The
current LGraph model is a low-level graph representa-
tion for hardware design. The semantic gap between
the high-level HDLs and the low-level LGraph IR must
be bridged to ease the generation of human-readable
C++, Verilog, and other HDLs.
We introduce LNAST, a high-level IR to bridge the

gap between LGraph and multiple high-level HDLs. The
combination of LNAST and LGraph in the LiveHD frame-
work addresses the concerns raised earlier in this sec-
tion.
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Figure 2: The new LiveHD flow with LNAST.

The IR design is a critical component in compiler de-
1Yosys proc is the command to translate high-level RTLIL
to flops, muxes. . .
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Figure 3: A sample Pyrope code and its LNAST representation. The code contains a bit width declaration of the
top output %z, an AND operation of two top inputs $a and $b, an add() function definition with submodule IO $c
and %s, a function call on add() with input assignment t0 to $c, and an if-else block.

velopment [10,11]. It is common practice for a compiler
tool stack to have multiple layers of IR, ranging from
high-level to low-level representations. A good high-
level IR has simple semantics to express the high-level
source language, and it hides details about the language
syntax to the back-end compiler stack. It has to be inde-
pendent of the programming language used and leverage
common code optimization. In the new LiveHD model,
we can view LNAST as a tree-like high-level IR, and
LGraph as a graph-like low-level IR.

LNAST plus LGraph model is similar to Truffle and
GraalVM [7], which also maintain a language-neutral
AST for dynamically typed languages such as Python
and JavaScript. GraalVM also has a low-level IR based
on the LLVM IR.

Figure 2 depicts the new LiveHD framework. LNAST
replaces the original LGraph-Yosys interface, and this
eliminates multi-translations from the previous model.
The language-agnostic nature of LNAST IR helps LiveHD
to target both traditional Verilog/SystemVerilog and
modern HDLs. The simple but expressive node-type
definition in LNAST provides a clear representation of
modern HDL semantics. LNAST has Static Single As-
signment(SSA) [6] transformation to enable efficient con-
version to LGraph. LNAST also facilitates the code-
generation back from LGraph to the high-level source
programs.

The rest of this paper is organized as follow: Section 2
describes the LNAST model and its internals. Section 3
reports the results, and Section 4 compares other similar
works. Section 5 concludes the paper.

2. LNAST
In this section, we explain the LNAST model and its

internal structure.

2.1 LNAST Internal Structure

2.1.1 Tree Structure and Node Attributes
Figure 3 illustrates the tree-like structure of LNAST.

The LNAST tree represents every module in the circuit.
The top and the statements(denoted as sts in Figure 3)
node make up the root of the tree. The children of
statements are generated in source code order. A prim-
itive operation generates a sub-tree with the operator
as the parent and the source and destination operands
as leaves. The and operation in Figure 3 is an exam-
ple of primitive. Another case of sub-tree generation
results from source code hierarchy. For instance, an if-

else or a function definition code block generates a new
hierarchical sub-tree and has its own statements node.
Each LNAST node has four attributes: NAME, TYPE,

LOC, and SUBS. NAME points to the variable name
in the source code, TYPE is the node type in LNAST
definition, and LOC denotes the line of code. SUBS is
the subscript of a NAME, and it aids in SSA transfor-
mations.

2.1.2 Neutral Node Types for HDLs
LNAST node types are intentionally designed to cap-

ture the shared properties across different HDLs and
aims to maximize expressibility. Node types are cate-
gorized into four groups: structural, variable, attribute,
and primitive op.

The structural group form the skeleton of LNAST
and represent the program control flow. They define
major node types like if, for, and while. LNAST to
LGraph transformation flattens the sub-trees generated
by loops.

The variables in the source code are classified as con-
stants or references by the variable group. Notice that
there are no specific type definitions for circuit input,
output, and register. Special-characters prefix these cir-
cuit components. For example, $x denotes that x is a
module input, %y is a module output, and @z is a reg-
ister.
The attribute group helps LNAST to express the at-

tributes of a variable. In the first line of the source
code in Figure 3, the variable’s bit width attribute is
expressed as an attr bits. The primitive op group in-
cludes common operations across different HDLs. For
instance, many HDLs have similar logical, arithmetic,
and comparison operations. A specific example is the
addition operation.

2.2 LNAST Live Support

2.2.1 Persistence
We laid heavy emphasis on the speed of LNAST data

persistence. LNAST uses memory-mapping like LGraph
IR to speed up reads and writes. In LNAST, the source
code is memory-mapped on to virtual memory. Lexing
is done to tokenize the source code, and these tokens
are stored in a memory-mapped vector. To record the
token of the name field in LNAST nodes, we store the
index in the memory-mapped vector instead of the plain
string. It ensures that the strings are not manipulated
directly and avoids additional memory operations.



2.2.2 Fast Split
Fast design split is a critical LiveHD infrastructure.

During parsing, it breaks a monolithic hierarchical de-
sign into sub-module Verilog files. The parsed tokens
are stored in persistent vectors. If a source code change
is detected, all LNASTs are not rebuilt from scratch.
We first compare the old and new persistent token vec-
tors and only rebuild the LNASTs whose associated
source code is modified.

2.3 LNAST Transformations in LiveHD

2.3.1 From HDLs to LNAST
In compiler design, a parser is used to scan the source

code tokens and generate the parse tree. In LiveHD,
different HDLs’ source code is parsed into a language-
specific parse tree, and translated into LNAST IR. The
difference between the LNAST and a parse tree is that
LNAST focuses more on representing useful abstract in-
formation from the components of the source code such
as conditional loop blocks, whereas a parse tree cap-
tures low-level details of syntax, for instance, brackets
and parentheses.

There are different front end parsers to its corre-
sponding HDL in LiveHD. To avoid code replications,
these parsers and LNAST share a common tree library
for building the tree data structures.

There is a working prototype flow from Pyrope HDL
to LNAST. Currently, we are building Verilog2005 and
SystemVerilog to LNAST flow. The goal is to make
LNAST represent fully synthesizable Verilog code and
not just the netlist syntax.

2.3.2 From LNAST to HDLs
A key motivation for conceiving the idea of LNAST is

to support multi-HDL code generation. This pass is still
under development. In Figure 2, notice that LNAST
generates HDLs, but it is doesn’t have to go through
the LGraph IR to achieve this. As shown by the dotted
arrow, there could be a closed-loop transformation from
the HDL to a language-specific parse tree, and then to
an LNAST, and back to the HDL directly without en-
tering the LGraph stage. This shortcut transformation
loop is useful to verify the correctness between LNAST
and HDLs quickly.

2.3.3 From LNAST to LGraph
The graph-based representation of LGraph IR makes

it virtually the same as an SSA. The SSA is a widely
used compiler optimization technique. It assures that
every variable in the IR is assigned exactly once and de-
scribes the use-def chains explicitly, which in turn helps
the LGraph optimization passes. To bridge LNAST to
LGraph easily, we perform the SSA transformation on
LNAST after building the primitive LNAST. Different
SSA definitions from the same variable are represented
in the SUBS (subscript) field in different LNAST nodes.

2.3.4 From LGraph to LNAST
We are currently working on translating LGraph IR

back to LNAST IR. It would be the stepping stone
to perform HDL code generation from the synthesized
LGraph. However, when the lower-level LGraph IR ex-

pands from higher-level LNAST IR, the structural in-
formation could be lost. Take the conditional loop as an
example. The loop node in LNAST is flattened in the
LGraph Data Flow Graph(DFG) analysis. Therefore,
the potential challenges would be identifying the corre-
sponding LGraph region and tag the associated LGraph
nodes, which would be useful when folding the loop re-
gion back to an LNAST node.

3. EVALUATION
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Figure 4: New LiveHD flow is competitive to old one
for tested circuits.

3.1 Setup
We compared the original LiveHD flow in Verilog and

the new LiveHD flow in Pyrope. The old flow uses Yosys
to elaborate a Verilog file into a RTLIL, then converts
the RTLIL to LGraph. The new flow uses a Pyrope
parser in JavaScript to create the parse tree text, con-
verts the parse tree text to LNAST, and transforms
the LNAST to LGraph. The target circuits are simple
xor logic chains ranging from 1 to 20,000 gates. Each
xor operation takes one line of code. We ran our ex-
periments on an Intel Core i7-6700K CPU @ 4.20 GHz
with 16 GB of memory, running Manjaro v5.2.8-1 and
used gcc v9.1.0.

3.2 Results
Figure 4 presents the runtime comparison of the new

and the old LiveHD flow. For a 20k xor chain circuit,
the former takes 2.54s in total, and the latter completes
in 2.32s. On further observation, we notice that the
Pyrope parser takes 1.01s to generate the parse tree
text. This parser is written in JavaScript for easy pro-
totyping with a performance tradeoff. We are currently
implementing a new Pyrope parser in C++ to speed
up the parsing phase. As memory mapping is used to
construct LNAST from the parse tree, only the pointer
of tokens are stored in memory instead of copying the
entire string. Therefore, this conversion speed is very
rapid, and it only takes 0.034s to generate LNAST.
For the LNAST to LGraph transformation, we no-

tice an 80% performance overhead due to vector copy
operations. We are currently working on its optimiza-
tion, and we expect the LNAST to LGraph conversion
to have a performance boost.

4. RELATED WORK



Hardware IR: FIRRTL and RTLIL are two open-
source hardware IRs that target RTL and netlist rep-
resentation. Similar to LNAST, their standardized in-
termediate representation of elaborated circuit makes it
possible for circuit designers to convert the design into
the IR and then continue to perform simulation and
synthesis using the supported toolchain. Nevertheless,
both FIRRTL and RTLIL are tightly knit to their tar-
get language and difficult to use as general-purpose IRs.
Ross Daly proposed CoreIR [12] to interact with differ-
ent HDLs, but the work focused more on formal verifi-
cation support. Another hardware IR is netlistDB [1]
which has a similar goal as LNAST to target different
HDLs, but LNAST leverages the back-end infrastruc-
tures and all tools of LiveHD.

Software IR: Truffle is a framework to bridge differ-
ent languages with Graal Java virtual machine. In this
framework, the AST of different languages is mapped to
the common Truffle AST. A series of optimization tech-
niques like tree rewriting and just-in-time(JIT) compil-
ing in the back-end GraalVM are applied to the common
Truffle AST. Click and Paleczny [5] present a graph-
based SSA intermediate representation to express op-
timization elegantly. The Common Intermediate Lan-
guage (CIL) [13] is used in the .NET system and is also
an IR designed for multiple languages such as C# and
Basic.

5. CONCLUSIONS
We present LNAST, a high-level tree-based IR to

bridge the gap between LiveHD and modern HDLs.
LNAST helps different HDLs to interface with LiveHD
flow and supports the code generation pass to perform
LiveHD simulation and verification. The tree-like struc-
ture of LNAST facilitates rebuilding only the modified
sub-trees, and this is useful to develop future live tech-
niques.

The experimental result shows that the prototype of
new LiveHD flow is competitive to the old one for a 20k
lines source code. As a part of future work, we plan to
optimize the conversion flow from LNAST to LGraph.
The integration of LNAST in LiveHD flow is still in
a preliminary phase. Future projects include interfac-
ing the FIRRTL and Verilog/SystemVerilog front-end,
designing a new fast C++ Pyrope parser, generating
C++ code for simulation, generating HDLs for verifi-
cation, optimizing tree traversal speed, and integrat-
ing live techniques like LiveSynth/SMatch [15, 16] into
LiveHD framework.
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