
RTLog Framework: Yet another open HDL and
compiler, this time for Relative-Timing design

Roberto Simone, Pablo D’Angelo, Ian Sztenberg, Francisco Badenas,
Francisco Dominguez, Agustin Ortiz, Guillermo Makar and Roberto Suaya

Departamento de Ingenierı́a Electrónica
Universidad Tecnológica Nacional, Facultad Regional Buenos Aires

Email: rsimone@frba.utn.edu.ar, fbadenas@est.frba.utn.edu.ar

Abstract—The development of a synthesis flow suitable for
Relative-Timing asynchronous digital circuits design is presented.
The compiler employs a four-phase handshake protocol to de-
velop feed-forward micro pipelines. An associated HDL language,
specifically devoted to describe such circuits, and a timing
constraint generator are included in the present framework.

Index Terms—HDL, Asynchronous, Compiler, OpenSource

I. INTRODUCTION

Relative Timing [1] is a mature technique for applications
demanding high performance silicon with low power budget.
Its design flow, on the other hand, could benefit from addi-
tional work in the automation of repetitive tasks. This work
presents a user friendly framework suitable for both Relative
Timing as well as synchronous designs which is compatible
with industry standard Electronic Design Automation (EDA)
tools.

The starting point is the analysis of a simple pipeline stage
[2] with launching and capturing registers as shown in Fig. 1.

d q

le

d q

le

le
lr

la

rr

ra

le
lr

la

rr

ra

b

lr_b

la_b

y

rr_y

ra_y

Fig. 1: Asynchronous Pipeline

In most asynchronous circuits with handshake the latching
command is given by a linear controller that manages the
data transfer between both latches. The circuit path where
data is generated and consumed by the latches is referred to
as datapath and provides all the necessary information about
the circuit structure. The location of the controllers and the
handshake signals can be inferred from that structure.

The datapath is completely defined by the data transfer
operations between its registers. We introduce a language
to describe such operations, which we name RTLog. The
language can also be used to describe synchronous circuits.

RTLog skips a detailed description between the handshake
connections, which is tedious and error prone. We develop a
compiler that takes this asynchronous circuit specification in
RTLog, further described in Section II, and transforms this

specification into a Verilog source code that can be processed
by EDA tools. A diagram of the overall flow is shown in Fig.
2.

RTL source (.rtl) Compiler Verilog (.v)

Constraints
Generator

Constraints (.tcl)

Standard CAD
Flow

Fig. 2: RTLog Flow

II. THE RTLOG LANGUAGE

RTLog language describes asynchronous circuits that em-
ploys a four-phase handshake protocol to handle data validity
and consumption. The main purpose of the language is to
describe data transfers between registers. Behavioral type
constructs are not part of the repertory of the language. The
language is not of the strongly typed variety. The circuit
description starts with the declaration of Input and Output
ports (I/O ports) as shown in Listing 1.

1 block foo
2 begin
3 p o r t s
4 begin
5 input l o g i c a , b
6 output l o g i c c [8]
7 end

Listing 1: Port declaration

Given the focus on transfer operations, the main group of
sentences are the ones related to assignments, as shown in
Listing 2. Assignments work at bit or bus level, provided that
there is no mismatch in length. Table I presents the operations
allowed by the language and Table II shows the reserved
words.

1 c = a and b or (not b)
2 e = (not s and a) or (s and b)
3 s = a xor b xor c i

Listing 2: Assign sentences

TABLE I: Operations supported by RTLog

not Logic NOT * Multiplication
or Logic OR *x Signed Multiplication

and Logic AND == Compare equal
xor Logic XOR != Compare different
+ Addition < Compare smaller

+x Addition with carry <= Compare smaller or equal
- Subtraction > Compare greater
-x Subtraction with borrow >= Compare greater or equal
>> Right Shift cat

rep
Concatenation
Replication>>s Right Shift signed

<< Left Shift

TABLE II: Keywords of RTLog

and cat if natural parameters select
begin constant in not port when
block end for or reg xor
case else logic others rep xnor

RTLog incorporates the usual arithmetic operations. Ad-
dition, subtraction and multiplication operators are present.
There is an extra operator that allows to directly recover
carry from additions. This feature, not available in Verilog,
simplifies the coding process. A similar operator is available
for subtractions.

For multiplications, the realization of a multiplier circuit
depends on whether the operands are signed or unsigned.
RTLog defines an operand for signed and another operand for
unsigned multiplications, instead of introducing a data type for
the operands. With this approach, operands remains as pure
binaries words.

Operands to perform concatenation, replication, rotation and
shifting are also present.

To instantiate a register, the reg modifier must be used
as part of the signal declaration. For non-registered signals,
the logic modifier is used instead. The register description
process in RTLog is simpler than its counterpart in Verilog.
The usual description of a Flip-Flop D with asynchronous reset
in Verilog involves several lines of code. The RTLog modifier
reg embraces all this concepts in one word. An example of
this is shown in Listing 3.

1 block foo
2 begin
3 p o r t s
4 begin
5 input l o g i c a , b
6 output l o g i c c , e
7 output reg d
8 end
9 reg f

10

11 c = a and b
12 d = c or b
13 f = c
14 e = f
15 end

Listing 3: Register declaration and use of RTLog

The logic modifier is also used when declaring non-

registered output ports.
The constructions if and select case allow for the imple-

mentation of multiplexers with and without priority respec-
tively.

RTLog allows for − generate like constructs to describe
iterative cells. Iteration over hard-coded indexes or over a
range of values given by a relational expression can be
performed using the when clause. RTLog has special clauses
for parametric design and for the declaration of constants.

III. THE COMPILER

The program flow can be conceptually divided in three
sections. The first one consists of a parser which takes the
RTLog source code and transforms it into a directed graph.
This is the typical process of a recursive descendent parser
[3]. After this step, a synchronous version of the circuit can be
easily produced by adding a global clock. The second section
adds the necessary controllers to the original directed graph,
to obtain an equivalent asynchronous version (an augmented
directed graph). The third section generates the Verilog source
code from the augmented directed graph. The output can be
taken as an input to a number of VLSI synthesizers. This flow
has been tested using Synopsys Design Compiler [4].

The algorithm of the second section consists on:

A. Addition of controllers

To add the controllers to the original directed graph, the
asynchronous version is generated following the next steps:

1) Replace the Flip-Flop nodes with Latch nodes.
2) Identify the Register-to-Register paths.
3) Insert the linear controller nodes for every Latch.
The first step is satisfied by browsing the cells in the graph

and replacing the attributes of those identified as flip-flops with
latch attributes. The second step consists of a graph traversal
[5]. To avoid further decomposition into several unrelated
register-to-register (R2R) paths, registers should be considered
as a complete binary word, as seen in Fig. 3.

d q

le

d q

le

le
lr

la

rr

ra

le
lr

la

rr

ra

b[0]

lr_b

la_b

y[0]

rr_y

ra_y

d q

le

d q

le

b[1] y[1]

d q

le

d q

le

b[2] y[2]

Fig. 3: Asynchronous pipeline for a bus

B. Fork and join controller trees

Asynchronous circuits typically require the insertion of
fork and join controllers, in addition to the linear ones.
The fork controllers are necessary when a launching register

drives multiple R2R paths to guarantee that every register
captures the data. Fig. 4a shows this scenario.

d q d q

le

le

le

lerl

rl

al

al

rr

rr

ar

ar

rr1

ar1rl

al rr2

ar2

rr1

ar1rl

al rr2

ar2

rr1

ar1rl

al rr2

ar2

fork
controller

fork controller tree

d q

le

lerl

al

rr

ar

Cloud logic

Cloud logic

(a) Circuit with fork controllers

d qd q

le

le

le

lerl

rl

al

al

rr

rr

ar

ar

rl1

al1 rr

arrl2

al2

rl1

al1 rr

arrl2

al2

rl1

al1 rr

arrl2

al2

join
controller

join controller tree

Cloud logic

d q

le

lerl

al

rr

ar

(b) Circuit with join controllers

Fig. 4: Tree configurations

The algorithm counts the number of paths from a single
launching register to all capturing registers from the set of R2R
paths. With this information all the necessary fork controllers
are inserted and the handshake signals are wired. Using 2-way
fork controllers, a fork controller tree structure can be obtained
to drive more than two R2R paths per launching register.

An analogous situation occurs when multiple paths converge
to the same capturing register. Here the device that grants a
correct exchange between registers is the join controller. As
in the previous case, this implementation requires a tree of
2-way join controllers, as shown in Fig. 4b.

C. Handshake ports

Next, the insertion of top-level handshake ports is per-
formed. The registers connected to the top-level input ports
should handle the incoming handshake signals and the reg-
isters connected to the top-level outputs ports should handle
the outgoing handshake signals. These scenarios are shown in
Fig. 5a and Fig. 5b.

d

le

q

lr

la

rr

ra

le

Data register

(a) Input Handshake

d

le

q

lr

la

rr

ra

le

Data register

(b) Output Handshake

Fig. 5: Handshakes for IO ports

At this point, the asynchronous 4-phase handshake protocol
circuit is completed and the Verilog source code is generated
for its ulterior synthesis. The output code includes both struc-
tural and concurrent Verilog sentences. The code includes a
separate library of controllers and latches, described in Verilog,
which are Process Design Kit (PDK) dependent. The designer
can update the PDKs with ease.

IV. CODE EXAMPLES

As a first example of the advantages of RTLog, the source
code for a 2-stage First-In First-Out (FIFO) Shift Register
circuit with an inverted output is shown in Listing 4. Line
12 of this example can be described in Verilog as shown in
Listing 5. RTLog shows a significant reduction in total lines
of code.

1 block f i f o a s y n c
2 begin
3 p o r t s
4 begin
5 input l o g i c a
6 output l o g i c b
7 end
8

9 reg q 1 , q 2
10

11 q 1 = a
12 q 2 = not q 1
13 b = q 2
14 end

Listing 4: FIFO en RTLog

1 . . .
2 always @ (posedge r s t) begin
3 i f (r s t) begin
4 q 2 <= 1 ’ b0 ;
5 end e l s e i f (l en 2) begin
6 q 2 <= q 2 nex t ;
7 end
8 end
9

10 a s s i g n q 2 nex t = not q 1 ;
11 a s s i g n b = q 2 ;
12

13 C element l c 2 (
14 . l e (l en 2) ,
15 . l r (r r i n t) , . l a (r a i n t) ,
16 . r r (r r 2) , . r a (r a 2)
17) ;

Listing 5: Register Transfer and Latch Controller

This benefit is further improved for more complex designs.
Number of lines of code demanding manual generation to
Verilog designer which are automatically generated using
RTLog are shown for a FIR filter in Table III.

TABLE III: Verilog lines automatically generated for a FIR
filter

Element Number Lines per element Total lines
Linear controllers 5 7 35
Join controllers 3 9 27
Fork controllers 3 9 27
Wires 26 1 26
Total number of Verilog lines needed 115

Table IV displays the equivalent savings for each of the
64 stages of a SHA-256 [6] hasher circuit when described in
RTLog.

TABLE IV: Verilog lines automatically generated for a SHA-
256 Hasher

Element Quantity Lines per element Total lines
Linear controllers 24 7 168
Join controllers 15 9 135
Fork controllers 16 9 144
Wires 138 1 138
Total Verilog lines needed 585

V. CONSTRAINTS GENERATION

There are a significant number of approaches to asyn-
chronous circuits design. This work is developed under the
Relative Timing (RT) methodology.

The RT methodology constrains every R2R path of the
circuit to avoid timing violations and guarantee data validity.
A second set of constraints is needed to ensure that the
synthesis tool (oriented to synchronous circuits) preserves the
combinational loops of the controllers.

RTLog uses feed-forward pipelines (input to output, without
feedback) to build the datapaths. Therefore the constraint
generation can be automatized by browsing the list of R2R,
I2R and R2O paths provided by the compiler.

This constraints can be grouped in three types, as seen in
Fig. 6:

• Capture path
• Data path
• Internals to the linear controller

Logic

delay

Capture path, design variable
Data path, design variable

Internals, technology dependant

Fig. 6: Basic constraints of RT methodology

The internal constraints prevent the synthesis tool from
modifying the internal circuit of the asynchronous controllers
using set disable timing and set size only commands.
The control and data paths are constrained to ensure that
data is available at the input of every latch before the enable
signal arrives and avoid timing violations. The data path
employs a set max delay command and the capture path
employs a set min delay command. The delay element is
inserted between the controllers as re-sizable buffer so the
synthesizer can meet constraint values. The compiler in its
current state supports the automatic generation of constraints
with precalculated values related to the specific fabrication
technology. The RT model is significantly more comprehensive
than what is being shown here [1].

VI. FUTURE WORK

Both RTLog and the code compiler tool are in an advance
stage of development. There is of course room for refine-
ment and improvements. Two dimensional arrays and module
instantiation are being incorporated. Comparisons with HDL
languages, like FIRRTL [7], and compilers are pending. Our
tests were performed with commercial tools from Synopsys, a
temporary approach to support the initial development of the
framework. A migration to OpenSource EDA tools, like Yosys
[8] and OpenTimer [9], is part of our main objective.

With regard to the process of automatic constraint gener-
ation, we are already working on techniques to reduce the
number of manual checks required. Iterations with PrimeTime
[10] tool to address performance and power optimization, as
well as area, will be included.

VII. CONCLUSIONS

This work presents a novel approach to HDL coding,
RTLog, for describing asynchronous circuits that follow a
four-phase handshake protocol with promising advantages over
Verilog. A compiler tool to output a Verilog source code
suitable for synthesis has been developed. Supporting elements
were created to approximate a complete framework. The
complete work is coded in C++. The current state of the project
is alpha and can be found on GitHub [11].

ACKNOWLEDGMENT

We would like to thank the Universidad Tecnológica Na-
cional - Facultad Regional Buenos Aires for supporting this
work with five undergraduate scholarships under the project
EIUTNBA0004541.

REFERENCES

[1] K. S. Stevens, R. Ginosar, and S. Rotem, “Relative timing [asynchronous
design],” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 11, no. 1, pp. 129–140, Feb 2003.

[2] I. E. Sutherland, “Micropipelines,” Commun. ACM, vol. 32,
no. 6, pp. 720–738, Jun. 1989. [Online]. Available:
http://doi.acm.org/10.1145/63526.63532

[3] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-
niques, and Tools. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1986.

[4] Synopsys, Design Compiler User Guide.
[5] G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification Algo-

rithms, 1st ed. Norwell, MA, USA: Kluwer Academic Publishers,
2000.

[6] U. D. of Commerce, N. I. of Standards, and Technology, Secure Hash
Standard - SHS: Federal Information Processing Standards Publication
180-4. USA: CreateSpace Independent Publishing Platform, 2012.

[7] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim,
C. Schmidt, C. Markley, J. Lawson, and J. Bachrach, “Reusability is
firrtl ground: Hardware construction languages, compiler frameworks,
and transformations,” in 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), Nov 2017, pp. 209–216.

[8] C. Wolf, “Yosys open synthesis suite,” http://www.clifford.at/yosys/.
[9] T. Huang and M. D. F. Wong, “Opentimer: A high-performance tim-

ing analysis tool,” in 2015 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), Nov 2015, pp. 895–902.

[10] Synopsys, Primetime User Guide.
[11] RTLog Repository. [Online]. Available: https://github.com/VLSI-UTN-

FRBA/RTLog

