
Approximate Logic Synthesis Using BLASYS
(WOSET-2019)

Jingxiao Ma, Soheil Hashemi, and S. Reda
School of Engineering, Brown University, Providence RI 02912

Abstract—Approximate computing is an emerging paradigm
where design accuracy can be traded for improvements in
design metrics such as design area and power consumption.
In this work, we overview our open-source tool, BLASYS,
for synthesis of approximate circuits using Boolean Matrix
Factorization (BMF). In our methodology the truth table of
a given circuit is approximated using BMF to a controllable
approximation degree, and the results of the factorization are
used to synthesize the approximate circuit output. BLASYS scales
up the computations to large circuits through the use of partition
techniques, where an input circuit is partitioned into a number
of interconnected subcircuits and then a design-space exploration
technique identifies the best order for subcircuit approximations.
BLASYS leads to a graceful trade-off between accuracy and full
circuit complexity as measured by design area. Using an open-
source design flow, we extensively evaluate our methodology on a
number of benchmarks, where we demonstrate that the proposed
methodology can achieve on average 48.14% in area savings,
while introducing an average relative error of 5%.

I. INTRODUCTION

Approximate computing techniques trade off accuracy with
improvements in design area and power consumption [14].
Approximate computing is attractive in applications domains
that are inherently tolerant to errors such as machine learning,
computer vision, computer graphics, and signal processing. A
central issue in approximate computing is how to automati-
cally synthesize an approximate circuit from an input circuit
[7]–[9], [11]–[13], [16], [17].

This paper overviews the public release of BLASYS, which
is a tool to synthesize approximate circuits [4], [5]. BLASYS
is based on Boolean Matrix Factorization (BMF), where the
truth table of a circuit is represented as a matrix that is
factorized into two smaller Boolean matrices that are then
synthesized into the approximate circuit. BMF is a derivative
of non-negative matrix factorization (NNMF) [6], [10]. The
non-negativity constraints on the factorization arise in physical
domains, such as computer vision and document cluster-
ing [20]. Recent advances in the mathematical community
extend NNMF techniques to Boolean matrices, where matrix
operations are carried in GF (2) [10]. The use of BMF creates
a solid foundation for approximate logic synthesis, and enables
systematic trade-off between design complexity and Quality of
Results (QoR). Since enumerating the truth table is limited
to only circuits of moderate number of inputs, BLASYS
partitions a large-input circuit into smaller subcircuits, that
are then approximated individually using BMF. We devise
a greedy design space exploration method that identifies a
good ordering for the subcircuits to approximate together

with the approximation degree for each subcircuit. Our tool
uses a full stack of open-source tools, including LSOracle for
circuit partitioning [3], Yosys for Verilog parsing [19], iVerilog
for simulation and QoR estimation [18], and ABC for logic
synthesis [2]. We evaluate our approach on a large a number
of circuits from the EPFL benchmark set [1]. We show that
our approach is able to trade-off accuracy with circuit area in
a graceful manner.

The organization of this paper is as follows. We discuss the
details of BLASYS in Section II, where we describe the basic
idea of using BMF algorithms to approximate logic circuits,
and then show how to scale our proposed method to larger
circuits. We describe BLASYS tool-chain flow in Section III.
We provide results from the public release of BLASYS in
Section IV. Finally, we summarize our main conclusions and
directions for future work in Section V.

II. PROPOSED METHODOLOGY

Non-negative matrix factorization (NNMF) is a factorization
technique where a k×m matrix M is factored into two non-
negative matrices: a k× f matrix B, and an f ×m matrix C,
such that M ≈ BC [6]. NNMF has been extended to Boolean
matrices where elements of all matrices are restricted to
Boolean values. In this case, multiplications can be performed
using logical AND, and additions are performed using logical
OR [10]. Figure 1 provides an example of BMF over GF (2).

In our proposed approach, a multi-output logic circuit with
k inputs and m outputs is first evaluated to generate its truth
table. The truth table, represented by M, is then given as
input to a BMF algorithm together with the target factorization
degree 1 ≤ f < m, to produce the two factor matrices
B and C. Matrix B is then given as the input truth table
to a logic synthesis tool to generate a k input, f output
circuit, which we refer to as the compressor circuit. Note
that the compressor matrix is simply the truth table of a
circuit with the same number of inputs as the original circuit
but with fewer (f to be exact) output signals. Therefore, it

Fig. 1. BMF example.



. . .

n 
in

pu
ts . . .

m
 outputs

n 
in

pu
ts . . .

f signals
decompressor circuit

(a) original circuit 

compressor circuit

(b) approximate circuit using matrix factorization

. . .

. . .

m
 outputs

Fig. 2. Generating approximate circuits using BMF.

can easily be mapped to logic. These f outputs from the
compressor circuit are then combined by the decompressor
circuit according to the C matrix using a network of OR
gates to generate the approximate m outputs as illustrated in
Figure 2. The compressor and decompressor circuits can then
be optimized by logic tools as one circuit to remove any logic
redundancies. Using this methodology, any arbitrary circuit
can be approximated by forcing the circuit to compress as
much information as possible in f intermediate signals and
then decompress them using simple OR gates.

Calculating the BMF is limited by computational complex-
ity as one needs to generate the truth table for every possible
input and state combination. Furthermore, BMF is a NP-hard
problem, and most algorithms in the literature are heuristics
[6], [10]. To address scalability, we partition a large circuit into
a number of subcircuits, each with a maximum number of k
inputs. k is chosen to make the runtime of the factorization
algorithm tractable and to meet memory requirements. In
our case we use a modified approach of the hypergraph
partitioning tool KaHyPar [1] as part of LSOracle []. We then
proceed to approximate each subcircuit individually. To eval-
uate the QoR of an approximate subcircuit, we first substitute
a partitioned subcircuit by its approximate counterpart, and
then evaluate the QoR of the entire modified circuit using the
supplied testbenches. In our testbenches, we use Monte Carlo
sampling to estimate the QoR of the approximate version of
the entire circuit.

Partitioning a large circuit can yield tens of interconnected
subcircuits. The order of processing the subcircuits and the
target factorization degree for each subcircuit impact the
results. BLASYS performs iterative design space exploration
to identify a good ordering. At each iteration, BLASYS
evaluates the impact of approximating each subcircuit by
reducing its factorization degree by one, and assessing the
resulting reduction in total circuit area and loss in QoR. The
approximate subcircuit that leads to the smallest ratio of error
to area reduction is then chosen and incorporated into the
full circuit. The iterative process is then repeated as long
as the error is above the set threshold or all subcircuits are
approximated to the minimum possible factorization degree,
i.e., f = 1.

Fig. 3. BLASYS flow.

III. BLASYS TOOL CHAIN

Figure 3 prvoides the flow of BLASYS. To begin with,
an input circuit is parsed with Yosys [19] to estimate initial
chip area, where ASAP 7nm design library is used. Using the
provided testbench, BLASYS simulates the input circuit and
store original results for QoR estimation. The simulation tool
we used is Icarus Verilog [18].

Next, LSOracle [3] is used to partition the input circuit
to multiple subcircuits, each of which has a similar size.
BLASYS partitions an input circuit until all partitions have
less than 16 inputs. BLASYS then creates a testbench that
generates the truth table for each subcircuit. We use the ASSO
algorithm [10] to perform BMF on each truth table based on a
vector called f-stream, which consists of factorization degree
for each subcircuit, which is determined by the design space
exploration method as discussed in Section II. As a result, each
truth table is factorized into a compressor and decompressor.
BLASYS calls ABC [2] to synthesize the compressor matrix
to a circuit and uses a network of logic OR to represent
decompressor. Thus, an approximated version of the input
circuit can be obtained by recombining all approximated
subcircuits. Afterwards, BLASYS calls Yosys to estimate the
chip area of the approximate circuit and executes a simulation
using the input testbench. From the original and approximated
simulation results, QoR can be estimated by measuring the
Hamming Distance Error, which is the number of output bit
flips in the results of the testbench simulation divided by
the total number of output bits. The area reduction ratio and
QoR are used to optimize f-stream iteratively and greedily as
mentioned in Section II. To bring the the runtime of BLASYS
to practical levels for large circuits, we implement a parallel
mode, which allows our flow to work on multiple designs
simultaneously using multiple cores.

IV. EXPERIMENTAL RESULTS

In our experiments we consider a number of benchmarks
from the EPFL benchmark set [1], and set k ≤ 16. These
numbers are simply chosen as they provide a balanced trade-
off between truth table complexity and number of subcircuits.
To generate the testbenches, we use Monte Carlo simulation
with 10,000 randomly generated input test vectors. For QoR,
we measure the normalized Hamming Distance Error by ratio
of flipped bits. Figure 4 shows trade-off between accuracy



TABLE I
IMPROVEMENT IN DESIGN AREA AS A FUNCTION OF ALLOWED MAXIMUM

HAMMING DISTANCE (HD) ERROR.
Number of Area Imp. (%)

benchmark I/O Partitions 5% HD 10% HD
Adder 256/129 20 11.09 21.71
Alu control unit 7/26 5 51.71 71.03
Barrel shifter 135/128 25 49.41 55.95
Coding-cavlc 10/11 50 71.67 90.56
i2c controller 147/142 100 63.86 78.66
int2float converter 11/7 5 35.32 47.27
Max 512/130 150 53.90 59.33

Average 48.14 60.64

Fig. 4. Trade-off between design area and QoR for 4 benchmarks.

and design area on four benchmarks based on our design-
space exploration technique. Although global optimum is not
guaranteed, our results show significant area reduction within
small HD error interval. This is beneficial since relatively small
amount of error makes more sense in practice. We tabulate
the results from all our evaluated benchmarks in Table I,
where we report area reduction ratio at error threshold 5% and
10% in Table I. The second column in the table provides I/O
information about benchmarks, and the third column provide
the number of partitioned subcircuits. Based on the circuit,
benefits of 11%-71% can be achieved within 5% HD error,
which leads to 48.14% chip area reduction on average. The
number increases to 60.64% with 10% HD error metric. As
the figure and table demonstrate, BLASYS achieves a large
amount of area reduction within small HD error.

The runtime of our tool is dominated by simulation process.
For example, it takes around 9.4 seconds to simulate Max
circuit on 10,000 test cases with iVerilog. Due to the greedy
optimization scheme, total times of simulation grows quadrat-
ically with number of partitions. Thus, choosing a proper
partitioning is vital. Our modified ASSO algorithm works
efficiently on subcircuits with k ≤ 16. With 16 inputs, ASSO
takes around 0.6 second to perform BMF.

V. CONCLUSIONS

In this paper we overviewed the public release of BLASYS.
We have demonstrated that BLASYS can synthesize

approximate version for arbitrary large circuits in Verilog.
BLASYS partitions the circuits using hypergraph partitioning
techniques and then proceeds to approximate the individual
circuit partition, while taking into account the impact on
global area and QoR. BLASYS leads to a systematic approach
to trade-off accuracy with circuit complexity. Our tool is
available at http://github.com/scale-lab/blasys.

Acknowledgments: This work is partially supported by NSF grant
1814920 and DoD ARO grant W911NF-19-1-0484.

REFERENCES

[1] Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli.
The EPFL combinational benchmark suite. Proceedings of the 24th
International Workshop on Logic amp; Synthesis (IWLS), 2015.

[2] Robert Brayton and Alan Mishchenko. ABC: An academic industrial-
strength verification tool. In International Conference on Computer
Aided Verification, pages 24–40. Springer, 2010.

[3] Laboratory for Nano Integrated Systems. Lsoracle. https://lsoracle.
readthedocs.io/en/master/, 2018.

[4] Soheil Hashemi and Sherief Reda. ”generalized matrix factorization
techniques for approximate logic synthesis. In IEEE/ACM Design
Automation Test in Europe, pages 1289–1292, 2019.

[5] Soheil Hashemi, Hokchhay Tann, and Sherief Reda. Blasys: approximate
logic synthesis using boolean matrix factorization. In Proceedings of the
55th Annual Design Automation Conference, page 55. ACM, 2018.

[6] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 401:788–791, 1999.

[7] S. Lee, L. K. John, and A. Gerstaluer. High-level synthesis of approx-
imate hardware under joint precision and voltage scaling. In Design,
Automation and Test in Europe, 2017.

[8] C. Li, W. Luo, Sachin S. Sapatnekar, and Jiang Hu. Joint precision
optimization and high level synthesis for approximate computing. In
Design Automation Conference, pages 104:1–6, 2015.

[9] Jin Miao, Andreas Gerstlauer, and Michael Orshansky. Approximate
logic synthesis under general error magnitude and frequency constraints.
In Proceedings of the International Conference on Computer-Aided
Design, pages 779–786, 2013.

[10] P. Miettinen and J. Vreeken. Mdl4bmf: Minimum description length
for boolean matrix factorization. ACM Transactions on Knowledge
Discovery from Data, 8(4):18:1–31, 2014.

[11] K. Nepal, Y. Li, R. I. Bahar, and S. Reda. ” ABACUS: A Technique for
Automated Behavioral Synthesis of Approximate Computing Circuits.
In Design, Automation and Test in Europe, pages 1–6, 2014.

[12] Kumud Nepal, Soheil Hashemi, Hokchhay Tann, R. Iris Bahar, and
Sherief Reda. Automated high-level generation of low-power approx-
imate computing circuits. In IEEE Trans. Emerging Topics Comput.,
volume 17(1), pages 18–30, 2019.

[13] Ashish Ranjan, Arnab Raha, Swagath Venkataramani, Kaushik Roy,
and Anand Raghunathan. Aslan: Synthesis of approximate sequential
circuits. In Design, Automation & Test in Europe Conference, pages
1–6, 2014.

[14] S. Reda and M. Shafique (Eds). Approximate Circuits: Metehodologies
and CAD. Chapman & Hall/CRC, 2019.

[15] J. Stainstrup and W. Wolf. Hardware/software co-design: principles and
practice. Springer.

[16] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghu-
nathan. Salsa: Systematic logic synthesis of approximate circuits. In
DAC Design Automation Conference 2012, pages 796–801, June 2012.

[17] Swagath Venkataramani, Kaushik Roy, and Anand Raghunathan.
Substitute-and-simplify: A unified design paradigm for approximate and
quality configurable circuits. In Design, Automation and Test in Europe,
pages 1367–1372, 2013.

[18] Stephen Williams. Icarus verilog. http://iverilog.icarus.com/, 2006.
[19] Clifford Wolf. Yosys open synthesis suite. http://www.clifford.at/yosys/,

2016.
[20] W. Xu, X. Liu, and Y. Gong. Document clustering based on non-

negative matrix factorization. In ACM SIGIR conference on Research
and development in informaion retrieval, pages 267–273, 2003.

http://github.com/scale-lab/blasys
https://lsoracle.readthedocs.io/en/master/
https://lsoracle.readthedocs.io/en/master/
http://iverilog.icarus.com/
http://www.clifford.at/yosys/

	Introduction
	Proposed Methodology
	BLASYS Tool Chain
	Experimental Results
	Conclusions
	References

