
LGraph: A Unified Data Model and API for Productive
Open-Source Hardware Design

Sheng-Hong Wang, Rafael Trapani Possignolo, Qian Chen, Rohan Ganpati, Jose Renau
Dept. of Computer Science and Engineering,

University of California Santa Cruz.
http://masc.cse.ucsc.edu

ABSTRACT
We present LGraph, a unified data model and API for
productive open-source hardware design. It is inspired
by live incremental synthesis and aims to provide a fast
infrastructure for a productive hardware development
flow. In this paper, LGraph is described both from the
perspective of a hardware designer as well as an EDA
software developer. Key features of LGraph include a
unified data model and API, a fast memory mapped
library design, integration with third-party tools and
hierarchical design traversal for third-party tools such
as OpenTimer, Mockturtle and ABC.

1. INTRODUCTION
There is a resurgence in hardware design due to the

degradation of performance, power, and area with hard-
ware specialization in multiple areas. A new momen-
tum of design innovation would come from open-source
EDA tools and highly productive hardware design flows.
Hardware designers want a fast design flow to iterate be-
tween synthesis and its analysis. EDA tool developers,
in particular from the open-source community, want to
work with a common model and API to focus on the
tool’s algorithm development.

Ideally, a productive hardware design flow should have
a very short design iteration period. This helps the de-
signers to fast implement the new design idea based on
the feedback from an interactive environment. Whereas,
in a traditional design flow, it is common for designers
to wait for hours or even days to obtain the design re-
sult.

Open-source EDA tools also plays a vital role for
hardware innovation as fellow researchers and hardware
developers could contribute their novelty without facing
licensing constraints. In recent years, research works
such as DATC [14], qflow [1], VTR [22] and Open-
ROAD [4] focus on integrating tools of different design
stages into a single RTL-to-GDSII flow. Some of the
single-stage tools are ABC [7], Mockturtle [24], and
Yosys [26] for logic synthesis, OpenTimer [11], Open-
STA [13] for static timing analysis, RePlAce [9] and
NTUPlace3 [8] for placement and NCTU-GR [18] and
TritonRoute [15] for routing.
These works on integrating open-source tools have

shown the potential of building a tapeout-ready flow.
Despite the correctness of these design flows, they are
still far from being ideal. One important source of issues
is the lack of a common data model and APIs. Individ-

ual tools are developed using different data structures
which largely raises the integration difficulty. Moreover,
tools not developed using a common data model end up
replicating code and efforts. For example, almost every
tool implements its own netlist parser. This code repli-
cation further causes a non-negligible portion on the
flow execution time. To make matters worse, not all
tools implement standards equally, causing compatibil-
ity issues.
There are several sources for the slow hardware com-

pilation flow including design elaboration, logic synthe-
sis, timing analysis, placement, and routing. The state-
of-art incremental technique like SMatch [21] has been
applied to provide an interactive experience but is lim-
ited to synthesis. However, EDA tools are IO heavy
applications and re-parsing the netlist and libraries to
the internal data structure of these tools additionally
takes a large portion on the flow’s run time. As men-
tioned in [19], it would take Yosys [26] tens of seconds
to parse a reasonably large RTL file, which leads to a
less productive design experience. The situation is even
worse when the project goes into debug or optimization
phase. Although changes applied in multiple flow iter-
ations are small, designers have to wait for the same
re-parsing time repeatedly.

Performing design synthesis and static timing analy-
sis in a hierarchical manner is a key feature for produc-
tivity in the hardware design flow. However, as men-
tioned in [10], many open-source logic synthesis and
STA tools such as OpenTimer, Mockturtle, and ABC
lack hierarchical design support as compared to indus-
trial tools.
In order to optimize the whole design, the designer

must first flatten the hierarchical design and then feed it
to these tools. However, physically flattening every sub-
module during the logic synthesis phase would increase
the complexity of the back-end physical synthesis. Fur-
thermore, from the point of tool development, even if
each tool implements the hierarchical feature, the in-
sidious code replication among these tools still violates
the DRY (don’t repeat yourself) principle in software
development.
In this paper, we present the enhanced version of

LGraph, our attempt to build an infrastructure for pro-
ductive hardware design flow. LGraph is inspired by
the incremental synthesis technique LiveSynth [20], and
stands for“live graph”for the goal of providing feedback
from small design changes lively – within few seconds.

http://masc.soe.ucsc.edu


Following are the highlighted key features of the en-
hanced LGraph:

1. Unified data model/API: A unified data model
and API in C++17 for digital circuits. LGraph is meant
to represent netlists in different phases of the design flow
from RTL to layout including simulation and code gen-
eration. The easy-to-use APIs largely reduce the design
effort of tool developers. More importantly, the nature
of the unified data model could prevent the possible
code duplication and avoid parsing and generating the
netlist between the internal stages of the RTL-to-GDSII
flow.

2. Hierarchical design traversal: The hierarchi-
cal cross-module traversal ability of LGraph empowers
the integrated third-party tools to run the core algo-
rithm in a virtually flattened form. Therefore, LGraph
could achieve the goal of global optimization implicitly
without affecting the physical design phase.

3. Fast memory mapped library design: LGraph
is built with a live interactive design flow in mind. We
have designed a memory mapped C++17 library for
fast netlist load/unload.

4. Third-party tools integration: LGraph is
currently being integrated with some open-source tools
such as Mockturtle, OpenTimer, and Yosys. Open-
source EDA tool developers could leverage LGraph’s
succinct API and generic data structure to implement
their algorithm and use the integrated third-party tools
to complete the whole design flow.

2. LGRAPH
In this section, we first highlight the key features

of LGraph for EDA tool developers: a fast memory
mapped library design, selective developer-friendly APIs,
the hierarchical attribute and traversal. We then dis-
cuss how LGraph could be integrated with other tools in
the design flow and the integration of two third-party
tools with LGraph. Lastly, we discuss some ideas to
increase interoperability and speed of LGraph.

2.1 LGraph for EDA Developers

2.1.1 Fast Memory Mapped Library in C++17
Modern SoC design usually constitutes hundreds of

millions, even billions of logic gates. To fast load/store
such a large netlist, LGraph uses the memory mapping
technique for fast persistence. The memory mapping
technique will map a disk file directly to the virtual
memory space and thus reduce the buffer copy oper-
ations. It has the speed advantage for large file pro-
cessing [17]. We implement a fast memory mapped li-
brary called mmap lib with basic data structures such
as vector, hash map, bi-directional hash map, set, and
tree. These fundamental containers form the skeleton
of LGraph’s storage code base. They were used exten-
sively for constructing graph networks and attributes.
As the program gets completed, LGraph’s database is
automatically synchronized to the disk by the OS.

2.1.2 Node, Pin, and Edge Construction
A single LGraph represents a single netlist module.

LGraph is composed of nodes, node pins, edges and ta-
bles of attributes. An LGraph node is affiliated with

a node type and each type defines different amounts of
input and output node pins. For example, a node can
have 3 input pins and 2 output pins. Each of the IO
pins can have many edges to other graph nodes. Every
node pin has an affiliated node pid. A pair of driver pin
and sink pin constitutes an edge. In the following API
example, an edge is connected from a driver pin (pid1)
to a sink pin (pid3). The bitwidth of the driver pin
determines the edge bitwidth.

auto node = lg->create_node(Node_Type_Op);
auto dpin = node.setup_driver_pin(1);
dpin.set_bits(8);
auto spin = node2.setup_sink_pin(3);
dpin.connect(spin);

2.1.3 LGraph Transversal
LGraph is a bidirectional graph representation sup-

porting topological sort traversal in an input-forward
and output-backward manner. If the order in which
nodes are visited does not matter in the algorithm, de-
velopers could choose the fast iterator which would visit
the next node in the cache line.

for (const auto &node:lg->forward()) {...}
for (const auto &node:lg->fast()) {...}

3

3

3

3

3

FF

Sub1

GIO

GIO

Sub2

GIO

FF

Sub2

GIO

Figure 1: A hierarchi-
cal LGraphs. A sub-graph
node is a sub-module in-
stantiation. The hierarchi-
cal traversal will walk into
the sub-graph structure.

Top
hid1

Sub2
hid4

Sub2
hid3

Sub1
hid2

Figure 2: The tree hi-
erarchical view for Fig-
ure 1. Each instantia-
tion has a unique hid and
hierarchical attribute ta-
ble.

LGraph now supports hierarchical traversal. Each
sub-module of a hierarchical design will be transformed
into a new LGraph and represented as a sub-graph node
in the parent module, as shown in Figure 1. If the hi-
erarchical traversal is used, every time the iterator en-
counters a sub-graph node, it will load the sub-graph
persistent tables to the memory and traverse the sub-
graph recursively, ignoring the sub-graph input/outputs.
This cross-module traversal treats the hierarchical netlist
just like a flattened design. In this way, all integrated
third-party tools could automatically achieve global de-
sign optimization or analysis by leveraging the LGraph
hierarchical traversal feature.

for (const auto &node:lg->forward_hier()) {...}



2.2 LGraph Attribute Design
Design attribute stands for the characteristic given to

a LGraph node or node pin. For instance, the charac-
teristic of a node name and node physical placement.
Despite a single LGraph stands for a particular mod-
ule, it could be instantiated multiple times, for example,
the sub2 node in Figure 1. In this case, same module
could have different attribute at different hierarchy of
the netlist. A good design of attribute structure should
be able to represent both non-hierarchical and hierar-
chical characteristic.

2.2.1 Non-Hierarchical Attribute
Non-hierarchical LGraph attributes include pin name,

node name and line of source code. Such properties
should be the same across different LGraph instantia-
tions. Two instantiations of the same LGraph module
will have the exact same user-defined node name on ev-
ery node. For example, in Figure 1, instantiations of a
sub-graph 2 in both top and sub-graph 1 would main-
tain the same non-hierarchical attribute table.

node.set_name(std::string_view name);

2.2.2 Hierarchical Attribute
We introduced a new design of hierarchical LGraph

attribute after an inspirational discussion with the au-
thor of FIRRTL. LGraph’s hierarchical attribute is achi-
eved by using a tree data structure to record the de-
sign hierarchy. In LGraph, every graph has a unique id
(lg id), every instantiation of a graph would form some
nodes in the tree and every tree node is indexed by a
unique hierarchical id (hid). As shown in Figure 2, we
are able to identify a unique instantiation of a graph
and generate its own hierarchical attribute table. An
example of hierarchical attribute is wire-delay.

node_pin.set_delay(float delay);

2.3 3rd Party Tool Integration
The integration of third-party tools into LGraph is

intuitive. Most tools have APIs to construct netlist
in their internal data structure. Thus, we could first
create an object of the tool in the LGraph program,
traverse the LGraph netlist and use the tool’s API to
build an equivalent circuit on the fly inside the object.
Then we make the object perform its main functions,
for instance, synthesis. Finally, we map the tools data
structure back into LGraph. Currently, Mockturtle and
OpenTimer are being integrated into LGraph and there
is an initial working prototype of the same.

2.3.1 Mockturtle
LGraph uses Mockturtle’s library for LUT-based syn-

thesis. We first partition combinational groups and
map these groups from LGraph to Majority-Inverter
Graph (MIG) [5] for synthesis. The synthesized MIG
networks are then technology mapped to k-bit Lookup
table (KLUT) networks and stitched back to LGraph.

2.3.2 OpenTimer

The synthesized LGraph will then use the integrated
OpenTimer to perform timing analysis. Again we tra-
verse the LGraph netlist and build the corresponding
OpenTimer structure, compute timing inside the Open-
Timer object and return the critical-path information.

2.4 Other Ongoing LGraph Work

2.4.1 Fast Verilog Spliter
We also implemented a very fast Verilog splitter. The

splitter would parse through the design module and I/O
definition to generate tokens, then split a large hier-
archical design like BOOM into small Verilog files by
module. The reason to split the large design is for a po-
tential parallel elaboration optimization. The parsing
process is very fast because we focus on the split and
there is no construction of internal abstract syntax tree.

2.4.2 LNAST
Another project is the design of a language-neutral

AST (LNAST) as the front end of LGraph. LNAST is
meant to be the high-level intermediate representation
(IR) to bridge different hardware description languages
(HDLs) with LGraph. Currently LNAST supports Py-
rope [23] and will be extended to Verilog and FIRRTL
in the future.

2.5 LGraph for Design flow Users

Elaboration Passes Code Generation

Yosys

LNAST

JSON

lib/lef/def

Logic Synth

Mockturtle/ABC

STA
OpenTimer

FPGA
RapidWright

Physical Synth

x_placer

y_router

FIRRTL

Verilog

Pyrope

C++

Verilog

FIRRTL

Pyrope

HLS

Yosys

LNAST

JSON

Graphviz

LGraph

Figure 3: An overview of LiveHD flow. The dash-lines
represent the future integration projects.

The ultimate goal of LGraph is building a live hard-
ware development (LiveHD) flow for circuit designers.
Figure 3 shows the overview of LiveHD. The LiveHD
flow will start from the elaboration phase to generate
an LGraph from HDLs. In the pass phase, LGraph
interfaces with Mockturtle or ABC to perform tech-
nology mapping and logic synthesis, calls OpenTimer
for STA, performs FPGA placement and routing using
RapidWright [16]; and in the future, will apply physi-
cal synthesis by the integrated placer and router. Some
other passes like dead code elimination and bitwidth
optimization will further help achieve a more optimal
LGraph. In the code generation phase, the conversion
from LGraph to LNAST IR helps generate the opti-
mized netlist and C++ code for simulation. There is
also a plan to bridge LiveHD, FIRRTL [12] and Chisel [6].



3. EVALUATION

3.1 Setup
We compared LGraph’s memory mapped librarymmap -

lib with the C++17 standard library, Abseil C++ li-
brary [25], robin-map [2], and flat-hash-map [3]. We
randomly generated 100k from a uniform random num-
ber generator to insert pairs of uint32 t key and value
to hash map, then we erase the 100k elements randomly
and measured the runtime. We perform both the vec-
tor and hash map flow 100 times and take the average
execution time.

We also evaluate the scalability on the alpha LGraph-
Mockturtle LUT synthesis flow and compare it with
the Yosys-ABC synthesis flow 1 targeting Xilinx 7-series
FPGAs. We used simple combinational chains of gates
ranging from 1 to 50K serialized concatenations.

All experiments were run on a Intel Core i7-6700K
CPU @ 4.20 GHz with 16 GB of memory, running Man-
jaro v5.2.8-1. Tools were compiled with gcc v9.1.0.

3.2 Results

3.2.1 LGraph Memory Mapping Library
We evaluated the access speed on various sizes of vec-

tors and hash maps. LGraph’s mmap lib::vector is
39.1% faster than std::vector in our simple test, and
LGraph’s runtime scales better. Figure 4 shows the av-
erage run time for writing and reading the entire vector
on both LGraph mmap lib::vector and C++’s standard
vector. The comparison result between C++ hash map
implementations and mmap lib::map is shown in Fig-
ure 5.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

1 2 3 4 5 6 7 8 9 10

ru
n 

tim
e 

(s
ec

on
ds

)

vector size (millions)

mmap_lib::vector
std::vector

Figure 4: LGraph’s mmap lib::vector has faster run-
time compared to the std::vector

Themmap lib::map design shows a competitive speed
among all competitors when hash table size is under 10
million and starts to outperform others when the table
size is in the order of 10 million which is typically the
size of a modern-day partitioned VLSI netlist. Not only
does it have the fast container access time, LGraph’s
mmap lib library also provides an extra advantage of
data persistence which would be the key feature when
developing live incremental VLSI flow as we dont have
to re-parse the whole data again.

3.2.2 LGraph-Mockturtle LUT Synthesis Flow
We also looked into the LUT synthesis scalability

for flows of LGraph-Mockturtle, Mockturtle only, and
Yosys-ABC. The prototype of LGraph-Mockturtle LUT
1Commands include (1) read verilog (2) proc (3) techmap
(4) abc -lut 4, only the time of (3) and (4) are measured

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

1 2 3 4 5 6 7 8 9 10 11 12

ru
n 

tim
e 

(s
ec

on
ds

)

hash table entries size (millions)

std::unordered_map
absl::flat_hash_map

robin_hood::unordered_map
ska::flat_hash_map

mmap_lib::map

Figure 5: LGraph’s mmap lib::map is in par with
best-in-class maps for entry sizes less than 10 million
but faster for entry sizes in the order of 10 million

mapping flow starts from converting LGraphs to MIG
networks, synthesizing and mapping them to KLUTs,
and converting the KLUT networks back to LGraphs.
The Mockturtle-only flow is almost the same but it ex-
cludes the conversion steps from and to LGraphs. For
Yosys-ABC flow, we only measure the execution time
from RTLIL to technology mapping, and to ABC LUT
synthesis.

 0

 20

 40

 60

 80

 100

 120

 140

10 20 30 40 50

ru
n 

tim
e 

(s
ec

on
ds

)

xor chain length (thousands)

RTLIL Yosys-ABC LUT synth
Mockturtle LUT synth

LGraph-Mockturtle LUT synth

Figure 6: The LGraph-Mockturtle flow is faster than
Yosys-ABC flow under all tested scenarios

Figure 6 compares the scalability of LUT synthe-
sis among various flows such as LGraph-Mockturtle,
Mockturtle only, and Yosys-ABC. Though the LGraph-
Mockturtle flow is still in its early development stages,
the run-time is certainly better than the Yosys-ABC
flow. For a 50k combinational chain, it takes the Yosys-
ABC flow 134 seconds to finish while only takes our
LGraph-Mockturtle flow 25.7 seconds, an 80.8% speedup.
When compared to the flow of Mockturtle only, there
is an integration overhead in our flow; the main rea-
son lies with the prototype implementation: there are
some network copy operations in the integration be-
tween LGraph and Mockturtle, which take quite a bit
of time. We are currently working on the algorithmic
optimization to deal with this performance overhead.

4. CONCLUSIONS
In this paper, we present the enhanced LGraph as

a fast infrastructure for open- source EDA developers
and integrated design flow for hardware designers. New
features include a fast memory mapped library to avoid



netlist re-parsing, the hierarchical traversal function to
enable the integrated tools to handle hierarchical de-
sign support automatically, and a prototype flow of
LGraph’s integration with Mockturtle and OpenTimer.

Our results show that LGraph’s memory-mapped vec-
tor is 39.1% faster than C++ standard library designs.
The design of LGraph’s memory-mapped hash map is
comparable to the best C++ open-source implemen-
tations. We also show a working technology mapping
flow with the integration of LGraph and Mockturtle for
FPGA lut synthesis, which is 80.8% faster than Yosys-
ABC flow and still have room to further speed up.

Future work includes integration with RapidWright [16]
for FPGA placement and routing, interface for different
HDLs and HLS from the new LNAST high-level IR,
and optimizing LiveHD with technique of LiveSynth/S-
Match [20, 21]for a productive open- source hardware
design flow.

Acknowledgments
This work has been supported by the Center for Re-
search in Open-Source Software (CROSS) at UC Santa
Cruz, which is funded by a donation from Sage Weil and
industry memberships. This work was also supported
in part by the National Science Foundation under grant
CCF-1514284. Any opinions, findings, and conclusions
or recommendations expressed herein are those of the
authors and do not necessarily reflect the views of the
NSF

5. REFERENCES
[1] “Qflow,” http://opencircuitdesign.com/qflow/, online;

accessed on 20 August 2019.

[2] “robin-map,” https://github.com/Tessil/robin-map, online;
accessed on 28 August 2019.

[3] “ska-map,” https://github.com/skarupke/flat hash map,
online; accessed on 28 August 2019.

[4] T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi,
A. Hosny, A. B. Kahng, M. Kim, J. Lee, U. Mallappa,
M. Neseem et al., “Toward an open-source digital flow:
First learnings from the openroad project,” in Proceedings
of the 56th Annual Design Automation Conference 2019.
ACM, 2019, p. 76.

[5] L. Amarú, P.-E. Gaillardon, and G. De Micheli,
“Majority-inverter graph: A novel data-structure and
algorithms for efficient logic optimization,” in Proceedings
of the 51st Annual Design Automation Conference. ACM,
2014, pp. 1–6.

[6] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman,
R. Avižienis, J. Wawrzynek, and K. Asanović, “Chisel:
constructing hardware in a scala embedded language,” in
DAC Design Automation Conference 2012. IEEE, 2012,
pp. 1212–1221.

[7] R. Brayton and A. Mishchenko, “Abc: An academic
industrial-strength verification tool,” in International
Conference on Computer Aided Verification. Springer,
2010, pp. 24–40.

[8] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and
Y.-W. Chang, “Ntuplace3: An analytical placer for
large-scale mixed-size designs with preplaced blocks and
density constraints,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, vol. 27, no. 7, pp. 1228–1240, 2008.

[9] C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang,
“Replace: Advancing solution quality and routability
validation in global placement,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 2018.

[10] R. Friesenhahn and J. York, “Arl: Uts experiences in the
free open-source vlsi eda landscape,” Oct. 2018.

[11] T.-W. Huang and M. D. F. Wong, “OpenTimer: A
high-performance timing analysis tool,” in Computer-Aided
Design, Proceedings of the IEEE/ACM International
Conference on, ser. ICCAD’15. Piscataway, NJ, USA:
IEEE Press, Nov. 2015, pp. 895–902.

[12] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang,
A. Magyar, D. Kim, C. Schmidt, C. Markley, J. Lawson
et al., “Reusability is firrtl ground: Hardware construction
languages, compiler frameworks, and transformations,” in
Proceedings of the 36th International Conference on
Computer-Aided Design. IEEE Press, 2017, pp. 209–216.

[13] James Cherry, “OpenSTA,”
https://github.com/abk-openroad/OpenSTA, online;
accessed on 5 September 2019.

[14] J. Jung, P.-Y. Lee, Y.-S. Wu, N. K. Darav, I. H.-R. Jiang,
V. N. Kravets, L. Behjat, Y.-L. Li, and G.-J. Nam, “Datc
rdf: Robust design flow database,” in 2017 IEEE/ACM
International Conference on Computer-Aided Design
(ICCAD). IEEE, 2017, pp. 872–873.

[15] A. B. Kahng, L. Wang, and B. Xu, “Tritonroute: an initial
detailed router for advanced vlsi technologies,” in 2018
IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). IEEE, 2018, pp. 1–8.

[16] C. Lavin and A. Kaviani, “Rapidwright: Enabling custom
crafted implementations for fpgas,” in 2018 IEEE 26th
Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM). IEEE, 2018, pp.
133–140.

[17] Z. Lin, M. Kahng, K. M. Sabrin, D. H. P. Chau, H. Lee,
and U. Kang, “Mmap: Fast billion-scale graph computation
on a pc via memory mapping,” in 2014 IEEE International
Conference on Big Data (Big Data), Oct 2014, pp. 159–164.

[18] W.-H. Liu, W.-C. Kao, Y.-L. Li, and K.-Y. Chao, “Nctu-gr
2.0: Multithreaded collision-aware global routing with
bounded-length maze routing,” IEEE Transactions on
computer-aided design of integrated circuits and systems,
vol. 32, no. 5, pp. 709–722, 2013.

[19] R. T. Possignolo, S. H. Wang, H. Skinner, and J. Renau,
“LGraph: A multilanguage open-source database,” in
Open-Source EDA Technology, Proceedings of the First
Workshop on, ser. WOSET’18, Oct. 2018.

[20] R. T. Possignolo and J. Renau, “LiveSynth: Towards an
interactive synthesis flow,” in Proceedings of the 54th
Annual Design Automation Conference 2017. ACM, 2017,
p. 74.

[21] ——, “SMatch: Structural matching for fast resynthesis in
fpgas,” in Proceedings of the 56th Annual Design
Automation Conference 2019. ACM, 2019, p. 75.

[22] D. Shah, E. Hung, C. Wolf, S. Bazanski, D. Gisselquist,
and M. Milanovic, “Yosys+ nextpnr: an open source
framework from verilog to bitstream for commercial fpgas,”
in 2019 IEEE 27th Annual International Symposium on
Field-Programmable Custom Computing Machines
(FCCM). IEEE, 2019, pp. 1–4.

[23] H. Skinner, R. T. Possignolo, and J. Renau, “Liam: an
actor based programming model for hdls.” in
MEMOCODE, 2017, pp. 185–188.

[24] M. Soeken, H. Riener, W. Haaswijk, and G. De Micheli,
“The EPFL logic synthesis libraries,” May 2018,
arXiv:1805.05121.

[25] T. Winters, “Non-atomic refactoring and software
sustainability,” in 2018 IEEE/ACM 2nd International
Workshop on API Usage and Evolution (WAPI). IEEE,
2018, pp. 2–5.

[26] C. Wolf, “Yosys open synthesis suite,”
http://www.clifford.at/yosys/, 2019, online; accessed on 5
September 2019.

http://opencircuitdesign.com/qflow/
https://github.com/Tessil/robin-map
https://github.com/skarupke/flat_hash_map
https://github.com/abk-openroad/OpenSTA
http://www.clifford.at/yosys/

	Introduction
	LGraph
	LGraph for EDA Developers
	Fast Memory Mapped Library in C++17
	Node, Pin, and Edge Construction
	LGraph Transversal

	LGraph Attribute Design
	Non-Hierarchical Attribute
	Hierarchical Attribute

	3rd Party Tool Integration
	Mockturtle
	OpenTimer

	Other Ongoing LGraph Work
	Fast Verilog Spliter
	LNAST

	LGraph for Design flow Users

	Evaluation
	Setup
	Results
	LGraph Memory Mapping Library
	LGraph-Mockturtle LUT Synthesis Flow


	Conclusions
	References

