
Hypergraph Partitioning via Geometric Embeddings
Sepideh Maleki

Department of Computer Science
The University of Texas at Austin

Email: smaleki@cs.utexas.edu

Udit Agarwal
Oden Institute

The University of Texas at Austin
Email: udit@utexas.edu

Keshav Pingali
Department of Computer Science
The University of Texas at Austin

Email: Pingali@cs.utexas.edu

Abstract—Hypergraph partitioning has been used in many
VLSI domains such as floor-planning, placement, and logic
synthesis. Circuits are modeled as hypergraphs in which nodes
represent the pins of the circuit and hyperedges represent nets
from the output pin of a gate to the input pins of other gates, and
the nodes are partitioned into a desired number of clusters so
that a metric such as the number of cut hyperedges is minimized.
Existing hypergraph partitioning techniques consider only the
topology of the hypergraph (connectivity between nodes) and
ignore its geometry (positions of nodes in 2D or 3D space). This
can lead to sub-optimal partitioning. In this paper, we describe
an embedding-based approach for hypergraph partitioning that
considers the geometry of circuits, which leads to better quality
partitions, while ensuring strong determinism.

I. INTRODUCTION

Hypergraph partitioning has applications in many areas
including VLSI design [1], data-mining, Boolean satisfiability
and numerical linear algebra. A hypergraph H = (V, E) is
defined as a set of vertices V , and set of hyperedges E,
where each hyperedge is a subset of V . The hypergraph
partitioning problem is to create k roughly equal partitions
of the vertices of a hypergraph such that a given objective
function over hyperedges is optimized. A common objective
function is to minimize the number of hyperedges connecting
vertices in different parts, also known as edge cut. A number of
other objective functions have been considered in the literature
[1].

Our primary motivation for studying hypergraph partitioning
comes from VLSI design. A modern circuit may contain
millions of objects and nets. Hypergraphs can be used to
represent circuits: vertices represent standard cells and macros,
and hyperedges represent nets. Figure 1 shows a gate-level
circuit and its hypergraph representation. Hypergraph parti-
tioning is sometimes used in circuit design and synthesis. One
algorithm for cell placement is min-cut placement in which
cells are partitioned so that the inter-partition connections are
minimized. These kinds of techniques are called topology-
based techniques since they consider only the connectivity
of vertices in deciding how to perform partitioning. However
objects also have geometric constraints such as boundary and
distance constraints. This information is not considered in
topology-based partitioning methods, which may result in poor
partitioning of the circuit for purposes such as placement.

In this paper we describe the progress we have made in
exploiting geometrical information to improve the quality of
solutions for VLSI design problems such as placement. Our

Fig. 1: A gate-level circuit and its hypergraph model

technique is based on incorporating geometry in a topology-
based multilevel hypergraph partitioning algorithm.

II. HYPERGRAPH PARTITIONING METHODS

A. Topology-based Partitioning

Topology-based partitioning algorithms are based on us-
ing the topological information of a hypergraph to obtain
the partitions. Breadth-First Search (BFS), Kernighan-Lin
(KL) [2], and Fiduccia-Mattheyses [3] algorithms are exam-
ples of topology-based partitioners. These algorithms are more
effective if they are implemented in multilevel hypergraph
partitioners. Multilevel partitioning consists of three phases:
coarsening, initial partitioning, and refinement. In the coarsen-
ing phase, the size of the hypergraph is reduced by repeatedly
merging vertices that should be assigned to the same partition.
This process is stopped when the size of the coarsened hyper-
graph is small enough or has reached some other termination
criterion. A topology-based partitioning algorithm such as
BFS, KL or FM is then run on the coarsest hypergraph. After
this initial partitioning, an iterative improvement algorithm
such as KL or FM is used to improve the quality of partitioned
hypergraph.

In every phase of the multilevel partitioning strategy, we
use only the topology of the hypergraph and ignore other
information associated with the actual cells in the circuit being
partitioned. For example, during the refinement phase, nodes

at the boundary of a partition may be moved to a different
partition to improve the edge cut. While several nodes may
yield the same improvement in the edge cut, one of them may
be preferred over the others for placement since it may permit
more effective exploitation of design hierarchies or be more
amenable to handling distance constraints.

B. Geometry-based Partitioning

In geometry-based partitioning of hypergraphs, each node
has a position in some d-dimensional space. This is equivalent
to assigning a vector in Rd to each node. The advantage of
having geometry is that we can compute distances between
nodes, and use the geometric notion of distance to perform
fast partitioning. For example the K-Nearest-Neighbors (KNN)
algorithm [4], a standard clustering algorithm in machine
learning, can be used to create the partitions. However, tech-
niques like KNN by themselves do not produce partitions with
good edge-cuts since they consider only the positions of nodes
when performing the partitioning, and do not take the topology
of the hypergraph into account.

III. EMBEDDING TECHNIQUES

When geometry is not available for a hypergraph, embed-
ding techniques can often be used to assign positions to nodes.
Sorting or geometry-based partitioning techniques can then be
used to create the partitions.

The classical examples of embedding techniques are spec-
tral methods [5]. In spectral methods, the graph or hypergraph
is represented as an adjacency matrix, and some of the
eigenvectors of the Laplacian of this matrix are computed.
The simplest of these techniques computes the Fiedler vector,
which is the eigenvector corresponding to the second smallest
eigenvalue of this matrix [6]. The signs of the entries in this
vector are used to assign nodes to partitions (intuitively, this is
a way of using sorting to create partitions once the geometry
is available). The Fiedler approach computes an embedding
of nodes in R1. By computing additional eigenvectors, it is
possible to create embeddings in higher-dimensional spaces.

While spectral partitioning often produces good quality
partitions, they are very expensive and not practical for large
hypergraphs. For this reason, they languished for about two
decades after an intense period of development in the 80’s
and 90’s.

In the past five years, the machine learning community
has invented a new class of embedding techniques that are
used heavily in vector-space models for text and speech
recognition. In particular, techniques for embedding graphs
have been developed, and these techniques are faster than
spectral methods while producing competitive results. Most
of these techniques are based on DeepWalk [7] and node2vec
[8]. These techniques use a simple layer neural network to
process nodes of a graph. The input to this neural network
is a set of random walks on the graph and the output is the
embedding of the nodes in the graph. In this paper, we adopt
a similar approach to find the embedding of the nodes in the
hypergraph.

Fig. 2: Embedding process for hypergraphs

A. Mapping hypergraph topology to geometry
Figure 2 shows an illustration of our method. We use

a similar approach to graph embedding methods such as
node2vec [8]. We compute the vector representation of nodes
in a hypergraph using the Skip-Gram neural network archi-
tecture. In this model, we first generate samples by doing a
random walk on a hypergraph. The purpose of the random
walk is to sample one hop and two hop neighborhoods. One
hop neighborhood samples hyperedges and nodes that belong
to that hyperedges while two hop neighborhood samples
neighboring nodes that have a hyperedge in common. Then,
we train this model by maximizing its log-likelihood on the
training set.

JML
= logP (vt|u)

= score(vt, u)− log(
∑

node v ′ in hypergraph

exp{score(v′, u)})

Here, score(v, u) is the dot product of node u and v. After
the training is finished, every node in the hypergraph will end
up having a vector associated to it that represents the position
of that node in the metric space. Next we discuss how to use
this geometric representation of nodes to improve the quality
of our partitioner.

IV. EMBEDDING-BASED HYPERGRAPH PARTITIONING

To improve the partitioning quality, we use the embedding
of nodes along with a multi-level hypergraph partitioning

algorithm. This extra embedding information can be used in
all three phases of the multi-level scheme, namely, Coarsening,
Initial Partitioning and Refinement. We now give a brief
description on how we use the node embeddings in all these
phases.

Algorithm 1 Node-Matching Algorithm
Input: Hypergraph H = (V,E), emb(V): embedding vectors
for nodes in V ;

1: for all v ∈ V in parallel do
2: if v is not matched then
3: for all u ∈ Neighbor(v) do
4: dist(v, u)←− distance(emb(v), emb(u))
5: end for
6: w ←− neighbor of v with minimum dist value (break

ties using id values).
7: Match v to node w.
8: end if
9: end for

In the Coarsening phase, we first use the embeddings to find
node-matchings and then we coarsen/merge the nodes that are
matched together. Algorithm 1 describes the pseudocode of
our node-matching algorithm. In Steps 3-5, node v computes
the distance values to each of its neighbors and then matches
itself to the closest node among its neighbors (Step 7). After
a matching is obtained, the coarser graph is obtained after
coarsening/merging the nodes that are matched together.

Similar approach has been used in [9] to improve the
coarsening phase of a multi-level hypergraph partitioning.
However, their work does not explore whether the remaining
two phases, initial partitioning and refinement, can also be
improved using these embeddings. In this work, we explore
this avenue by incorporating the embedding information in
both initial partitioning and refinement.

For the initial partitioning, we can run a geometry-based
partitioning such as spectral partitioning [5], since the initial
prtitioning is only done for coarsest graphs. This gives us a
bipartition of the coarsest graph.

Algorithm 2 Refinement Algorithm
Input: Hypergraph H = (V,E), emb(V): embedding vectors
for nodes in V , Partitions P0, P1

1: Compute coordinates of centroids of partitions P0 and P1.

2: L0 ←− nodes in P0 that are closer to centroid of P1

3: L1 ←− nodes in P1 that are closer to centroid of P0

4: lmin ←− min(|L0|, |L1|)
5: Swap lmin nodes between partitions P0 and P1, with

preference given to the nodes that are farther away from
the centroid of the current partition.

Algorithm 2 gives the pseudocode of one of the approaches
that we would like to explore for the refinement phase. In
Step 1 we compute the coordinates of the centroids of both

Graph Nodes Hedges Edges
Stanford 281,903 261,588 2,312,497
Xenon 157,464 157,464 7,733,376
IBM18 210,613 201,920 819,697
Webbase 1,000,005 1,000,005 3,105,536
Xyce 1,945,099 1,945,099 9,455,545

TABLE I: Benchmark Characteristics

Graphs Topology Topology +
Embedding Zoltan

Stanford 1,746 302 1,885
Xenon 8,157 3,672 3,407
IBM18 2669 2880 2472
Webbase 1,060 881 1,202
Xyce 1,164 2,558 426

TABLE II: Performance comaprison with Zoltan for 2-way
partitioning using 14 threads

partitions. Steps 2-3 compute sets L0 and L1 such that L0

contains the nodes from partition P0 that are closer to the
centroid of P1 and L1 contains the nodes from partition P1

that are closer to the centroid of P0. We can then swap lmin

nodes between P0 and P1 such that priority is given to the
nodes that are farther away from the centroid of the current
partiton (Step 5).

V. EXPERIMENTS

To do an initial test of our approach, we implemented
a topology based multi-level hypergraph partitioner that can
also leverage the obtained embedding information. We ran
our paritioner on five hypergraphs listed in Table I. All
hypergraphs except Xyce and IBM18 are obtained from the
University of Florida Sparse Matrix Collection [10]. IBM18
is a netlist from ISPD98, while VLSI Circuit Benchmark Suite
and Xyce are netlists from Sandia Laboratories [11].

In Table II, we compare our results with the state-of-the-
art partitioner Zoltan [11]. For all inputs except Xyce, we
observe that the embedding information does help in im-
proving the edgecut. In comparison to Zoltan, our embedding
implementation performs better on Stanford and Webbase, and
worse on the rest of the inputs. These initial experiments
show promising results. The initial implementation of this
code can be found here: https://github.com/Breakinbad/Galois-
1/tree/master/lonestar/experimental/embedding

VI. CONCLUSION

We showed how embedding techniques can be used to
obtain geometry from the topology of a circuit and how
to exploit this information in a topology-based hypergraph
partitioner. If geometry is available, we can use that informa-
tion instead of calculating an embedding for the hypergraph.
These techniques let us exploit both geometry and topology
to partition circuits for placement and other applications.

REFERENCES

[1] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel
hypergraph partitioning: Applications in vlsi domain,” IEEE Trans. Very
Large Scale Integr. Syst., vol. 7, no. 1, pp. 69–79, Mar. 1999.

[2] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” The Bell System Technical Journal, vol. 49, no. 2,
pp. 291–307, Feb 1970.

[3] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improving network partitions,” in 19th Design Automation Conference,
June 1982, pp. 175–181.

[4] T. Mitchell, Machine Learning, ser. McGraw-Hill International
Editions. McGraw-Hill, 1997. [Online]. Available: https://books.
google.com/books?id=EoYBngEACAAJ

[5] A. Pothen, H. Simon, and K.-P. Liou, “Partitioning sparse matrices with
eigenvectors of graphs,” SIAM J. Matrix Anal. Appl., vol. 11, pp. 430–
452, 1990.

[6] M. Fiedler, “Algebraic connectivity of graphs,” Czech. Math. J., vol. 23,
pp. 298–305, 1973.

[7] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2014, pp. 701–710.

[8] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, 2016, pp. 855–
864.

[9] J. Sybrandt, R. Shaydulin, and I. Safro, “Hypergraph partitioning with
embeddings,” IEEE Transactions on Knowledge and Data Engineering,
2020.

[10] T. A. Davis and Y. Hu, “The university of florida sparse matrix collec-
tion,” ACM Transactions on Mathematical Software (TOMS), vol. 38,
no. 1, p. 1, 2011.

[11] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling, and U. V.
Catalyurek, “Parallel hypergraph partitioning for scientific computing.”
IEEE, 2006.

