
Towards an Open-Source Verification Method with
Chisel and Scala

Martin Schoeberl, Simon Thye Andersen,
Kasper Juul Hesse Rasmussen

Department of Applied Mathematics and Computer Science
Technical University of Denmark

Lyngby, Denmark
masca@dtu.dk, simon.thye@gmail.com,

s183735@student.dtu.dk

Richard Lin
Department of Electrical Engineering and Computer Sciences

UC Berkeley
Berkeley, CA

richard.lin@berkeley.edu

Abstract—Performance increase with general-purpose proces-
sors has come to a halt. We can no longer depend on Moore’s
Law to increase computing performance. The only way to achieve
higher performance or lower energy consumption is by building
domain-specific hardware accelerators. To efficiently design and
verify those domain-specific accelerators, we need agile hardware
development.

This paper presents a combination of open-source tools for
verifying circuits described in mixed languages. It builds on top
of the Chisel hardware construction language and uses Scala to
drive the verification. We also explore the testing strategy used
in the Universal Verification Methodology (UVM) in the context
of verifying hardware described in Chisel.

Index Terms—digital design, verification, object-oriented pro-
gramming

I. INTRODUCTION

We can no longer depend on Moore’s Law to increase com-
puting performance [6]. Performance increase with general-
purpose processors has come to a halt. The only way to achieve
higher performance or lower energy consumption is by build-
ing domain-specific hardware accelerators [5]. Furthermore,
the production of a chip is costly. Therefore, it is essential to
get the design right at the first tape-out. Thorough testing and
verification of the design is mandatory.

To efficiently develop and verify those accelerators, we can
learn from software development trends such as agile software
development [4]. We believe that for the road ahead, we need
to adapt to agile hardware development [8].

Until a few years, the two main design languages Verilog
and VHDL, dominated the design and testing of digital cir-
cuits. However, both languages are decades behind modern
languages for software development.

Recent advances with SystemVerilog and Chisel [3], [11]
have brought object-oriented programming into the digital
design and verification process. SystemVerilog, an extension
of Verilog, adds object-oriented concepts for the non synthe-
sizable verification code. Chisel is a “Hardware Construction
Language”, embedded in Scala, to describe digital circuits.
Circuits described in Chisel can be tested and verified with a
Chisel testing framework and Scala tests. Scala/Chisel brings

object-oriented and functional programming into the world of
digital design.

One of Chisel’s primary benefits is its reliance on object-
oriented principles for hardware description. Other classes may
inherit this but with different implementations by defining a
base class, such as adding floating-point operations to an ALU.
As both the basic ALU and the FP-enabled ALU derive from
the same base class, they can be used interchangeably. The
object-oriented programming approach in Chisel allows for
easy parametrized hardware generation, as seen in e.g., the
RISC-V Rocket Chip [2], and is also used in the Chisel test de-
scribed in Section V-B. While VHDL supports configurations
and multiple architecture definitions, these require the designer
to start from scratch when defining a new architecture, instead
of simply improving or adding onto the existing architecture.

This paper describes a research project that aims to build a
testing framework in Scala that takes the best methods from
the Universal Verification Methodology (UVM) and decades of
experience in software testing. Furthermore, we aim to build
on open-source projects only. Therefore, our work is open-
source as well.

The main contribution of this paper is the exploration of
available open-source tools with a small example design. We
can verify digital designs written in mixed languages such as
Verilog, VHDL, and Chisel and simulate all of them in a tool-
flow consisting of open-source tools only.

II. THE UNIVERSAL VERIFICATION METHODOLOGY

The Universal Verification Methodology (UVM) is a
methodology for testing and verifying of digital circuits, in-
troduced in 2011. Previously, verification methodologies were
vendor-specific, forcing users to stay with one tool or to
spend a lot of time and money transitioning to a new tool.
UVM is unique in the fact that it is an Accellera standard
developed together with all of the major EDA vendors, such
as Questa, Cadence, and Synopsys. As of 2017, it has also been
standardized as IEEE 1800.2. Although SystemVerilog and
UVM are IEEE standards, the standards are freely available
through the IEEE Get program [9].



Fig. 1. Representation of a simple UVM testbench. By Pedro Araújo /
colorlesscube.com

UVM is implemented as a SystemVerilog library and uti-
lizes the fact that SystemVerilog uses object-oriented pro-
gramming (OOP) when designing testbenches. Using OOP
patterns such as inheritance and polymorphism, the verification
engineer can design generic components that can be extended
and modified to provide application-specific functionality.

A. A UVM Testbench

UVM Testbenches consists of several distinct components,
as shown in Figure 1. Each component performs only one
task in the testbench, allowing the engineer to make changes
to some components without affecting others. For example,
the sequencer is the component responsible for generating
transactions for the DUT, whereas the driver is responsible
for converting the transaction into pin-level wiggles, i.e.,
generating correct start/stop conditions and driving signals. If
a new sequence of transactions is to be generated, only the
sequencer is affected. Likewise, the sequencer does not care
how the transactions are converted into pin-level signals—
this is the sole responsibility of the driver. This distinction
into several components results in a more structured testbench
design as there are fewer dependencies than in a monolithic
testbench.

The main components of a UVM testbench are as follows:
A Sequence(r): defines the order of transactions necessary

for a given purpose, e.g., synchronization or reset sequence.
The sequencer is responsible for transferring the transactions,
defined by the sequence, to the driver.

A Driver converts transactions into pin-level signals and
drives these signals onto the DUT.

An Interface is a SystemVerilog construct which allows
the user to group related signals. A DUT may have several
interfaces attached. The interface is used to avoid hooking
directly into the DUT, making it easier to test multiple DUT
versions.

A Monitor monitors all traffic on the interface, converting
pin-level signals into transaction-level objects that can be
operated on by other components, such as a coverage collector
or scoreboard.

An Agent encapsulates monitor, sequencer and driver, set-
ting configuration values. Agents may be set active or passive

(with or without a driver and sequencer). An agent is useful
when it is necessary to have multiple instances of the same
components, e.g., when a 4-port network switch needs four
identical drivers with different configurations.

A Scoreboard is used to check whether correct functionality
is achieved. Usually does so by using a “golden model”
for co-simulation via the SystemVerilog direct programming
Interface.

The Environment is used to configure and instantiate all
child components. Environments are typically application-
specific and may be modified by the test.

The Test is the top-level verification component. The test
designer may choose to perform factory overrides of classes
and set configuration values here, which modify the child
components.

As shown above, even a “Hello, World” example using the
UVM requires that the user understands how and why each of
the different UVM components should be used. The use of so
many components causes UVM to have a very steep learning
curve, which may discourage adoption. This also means that
UVM is not the proper testing methodology for small designs
or one-off tests due to the initial workload. However, once the
initial setup of the testbench is finished for large and complex
designs, generating new tests becomes easier.

III. OPEN-SOURCE TOOLS

Our project plans to use mainly open-source tools, as we
believe that only the open-source movement can lead to tools
for agile hardware development and open libraries for IPs and
verification components.

A. Chisel

Chisel is a hardware construction language embedded in
Scala [3]. Chisel allows the user to write hardware generators
in Scala, an object-oriented and functional language. For
hardware generation and testing, the full Scala language and
Scala and Java libraries are available. For example, we read in
the string based schedules for a network-on-chip and convert
them with a few lines of Scala code into a hardware table to
drive the multiplexer of the router and the network interface.

Chisel is solely a hardware construction language, and thus
all valid Chisel code maps to synthesizable hardware. By
separating the hardware construction and hardware verification
languages, it becomes impossible to write non-synthesizable
hardware and in turn, speeds up the design process. As Scala
and Java’s full power is available to the verification engineer,
the verification process is also made more efficient.

B. ChiselTest

While Chisel ultimately produces Verilog, which can be
tested with industry-standard tools and processes, those gen-
erally force the user to pick between simple but limited (e.g.,
Verilog testbenches) or complex but powerful (e.g., UVM
testbenches).

ChiselTest [10], a nonsynthesizable testing framework for
Chisel, instead emphasizes on usability and simplicity while
providing ways to scale up complexity.



Fundamentally, ChiselTest is a Scala library that provides
access into the simulator through operations like poke (write
value into circuit), peek (read value from circuit, into the test
framework), and step (advance time). As such, tests written
in ChiselTest are just Scala programs, imperative code that
runs one line after the next. This structure uses the latest pro-
gramming language developments that have been implemented
into Scala and provides a clean and concise interface, unlike
approaches that attempt to reinvent the wheel like UVM.

Furthermore, ChiselTest tries to enable testing best practices
from software engineering. Its lightweight syntax encourages
writing targeted unit tests by making small tests easy. Fur-
thermore, a clear and clean test code also enables the test-
as-documentation pattern, demonstrating a module’s behavior
from a temporal perspective.

C. Simulators

While Chisel designs can be simulated with any simulator
that accepts Verilog input, there are trade-offs involved in
choosing simulators. Commercial simulators require expensive
licenses, while the open-source Verilator has a high time
cost for compilation despite being efficient per-cycle. On the
other hand, Treadle1 is a simulator that operates at the level
of Chisel’s intermediate representation, FIRRTL2. Simulators
like Treadle avoid the step of generating Verilog code and
compiling from Verilog, which can vastly reduce the setup
time for tests and efficiently run suites of many short tests.

Verilator has the benefit of compiling the Verilog code
before simulating it. This is much faster compared to event-
driven simulators but also limits the capabilities, as it only
works on synchronous designs. Verilator claims to be on par or
faster than the “Big 3” simulators on single thread. However,
it also supports multi-threaded simulation, which can greatly
improve simulation times for large designs [14].

D. Scala

The test environment and the driving code is written in
Scala. Scala, with its compatibility with Java, has a very rich
open-source library ecosystem. If you need a tool, e.g., an
ELF file reader to load a binary, there will be a Java library
available for it.

Furthermore, we can use all the testing libraries that have
been developed for software development. A popular library
is ScalaTest.3 A Chisel tester can be embedded in a ScalaTest
component, and a simple sbt test will execute all the tests.

IV. INTEGRATING LEGACY LANGUAGES

A verification method is only usable when it can handle
mixed-source designs. This means a Scala driven method must
be able to test components written in Verilog, VHDL, and
SystemVerilog.

Chisel has support for black boxes, which allows the use
of Verilog code within the Chisel design. Therefore, it is

1https://github.com/freechipsproject/treadle
2https://github.com/freechipsproject/firrtl
3https://www.scalatest.org/

HelloWorld.VHD GHDL YosysHelloWorld.vhd HelloWorld.v

VHDL2Verilog

Fig. 2. VHDL2Verilog workflow

relatively easy to integrate Verilog components when wrapped
into a black box. However, this forces Chisel to use Verilator
instead of Treadle to run the simulation, impacting startup
time.

Chisel does not fully support VHDL. It can support VHDL
using VCS, but there is no open-source solution available for
VHDL simulation. For companies with a lot of source code
written in VHDL this is a concern, as they must be able to
integrate their existing IP in a Scala/Chisel based design and
verification workflow. All major commercial simulation and
synthesis tools support mixed-language designs, but no open-
source tools exist that provide the same functionality.

To alleviate this issue, the open-source Yosys synthesis suite
[15] can be used. Yosys is an open-source digital hardware
synthesis suite for Verilog. Yosys also has a variety of plugins,
one of these being a plugin for using GHDL [7], an open-
source VHDL simulator. By using Yosys in conjunction with
GHDL, VHDL files are compiled to an RTL-based intermedi-
ate representation, which is then written to a Verilog file using
Yosys. GHDL has full support for IEEE 1076 VHDL 1987,
1993, 2002, and a subset of 2008. The workflow can be seen
in Figure 2. A working solution named VHDL2Verilog has
been made for this, which has been tested with certain simple
VHDL designs [1].

Thus, using Yosys together with GHDL, it is possible
to transpile VHDL to Verilog and then use a BlackBox to
instantiate the generated Verilog code. This allows for an
entirely open-source simulation toolchain, no matter which
HDL has been initially used.

V. FIRST EXPERIMENTS

Although this is a work-in-progress report, we have started
with an evaluation. We used an ALU with an accumulator from
the Leros processor [12] as our device-under-test (DUT). The
example is simple, but has a combinational part and state in
a register, being a non-trivial circuit for testing.

The original design is in Chisel, and we reimplemented it
in VHDL. We wrote tests in SystemVerilog/UVM and Scala.
As execution platform, we used Synopsys VCS, ModelSim,
Treadle, and Verilator.

We performed two experiments: (1) how to use hardware
described in Chisel and VHDL in a UVM test setup and (2)
how to test Verilog and VHDL components in a Chisel/Scala
test setup.

A. Using UVM with Chisel

The Chisel toolchain translates Chisel code into plain Ver-
ilog for simulation and synthesis. Therefore, we can use a

https://github.com/freechipsproject/treadle
https://github.com/freechipsproject/firrtl
https://www.scalatest.org/


UVM based test bench to test Chisel generated code. An
important issue is that the modules and port names in the
generated Verilog code are reasonable and do not change when
changing the Chisel design.

We designed a UVM testbench to test the reference design’s
various implementations, the simple ALU from the Leros
project. Constrained-random verification is performed by gen-
erating random stimulus and edge-case stimuli, and functional
coverage is collected. Also, we use a scoreboard to verify the
functionality of the DUT. We describe the reference model in
SystemVerilog.

As a SystemVerilog interface connects the DUT to the
testbench, no details about the DUT are exposed to the driver
and monitor. This makes it easy to replace the DUT with an
alternative implementation, e.g., in another HDL, and verify
its functionality. It is only necessary to instantiate the new
DUT and connect it to the interface, after which the test can
be run.

We run the UVM testbench on the Verilog description
generated by Chisel and on a VHDL version of the ALU.
Using the VHDL version required more manual work to make
the mixed-language simulation work, whereas the Verilog
version was very fast to implement. Generating Verilog with
Chisel and testing with UVM then proves to be a suitable
workflow. However, no open-source SystemVerilog simulator
with UVM support is known. Verilator primarily supports
synthesizable constructs and does not support UVM, though
this is on their roadmap [13].

B. Mixed Language Verification with Chisel

The initial experiment was to use UVM and test the VHDL
and Chisel version of the design. From Chisel code, we can
generate Verilog, which we can test with UVM. VCS and
ModelSim support mixed language simulation (SystemVerilog
and VHDL, but not Chisel). Therefore, this was straight
forward.

However, for the open-source tool-flow, we start from the
Chisel implementation. We wrote a test in Scala generating
constraint-random values and comparing the DUT output with
the output of a simulation written in Scala. The Chisel/Sala
version can execute in Treadle for quick startup time or in
Verilator for higher performance.

A Verilog implementation can be used in the Chisel setup
by wrapping the DUT into a so-called BlackBox. When mixing
Chisel with Verilog code, we need to use Verilator as a
simulation engine. To reuse that Scala test with our VHDL
implementation of the DUT, we use VHDL2Verilog to convert
the VHDL version of the DUT to Verilog and wrap it into a
BlackBox.

To reuse the test for two different implementations, we
use the object-oriented features of Chisel/Scala. We define an
abstract base class and extend that class by the Chisel imple-
mentation and the Chisel wrapper for the Verilog implementa-
tion. The tester expects the abstract base class. Using object-
oriented programming to describe hardware is an exclusive

feature of Chisel. SystemVerilog classes can only be used for
test code, not to describe hardware.

In the end, we have a setup where we can use the full
power of Scala (and Java) to test, co-simulate, and verify
digital circuits described in Chisel, Verilog, or VHDL. This
setup consists of open-source tools only.

C. The Road Ahead
This work-in-progress paper is a first sketch of the ideas to

combine SystemVerilog/UVM with Chisel/Scala for a produc-
tive design and verification of future digital circuits. We will
explore all combinations with a few more examples, provided
by our industrial partners. From that, we will bootstrap adding
constraint-random verification methods to Chisel testers and
collecting coverage metrics within FIRRTL.

D. Source Access
As the project explores open-source tools for digital circuits

design and verification, we provide all examples, including this
paper, in open-source on GitHub:
https://github.com/chisel-uvm.

Acknowledgment
This work has been performed as part of the “InfinIT

– Innovationsnetværk for IT”, UFM case no. 1363-00036B,
“High-Level Design and Verification of Digital Systems”.

REFERENCES

[1] Simon Andersen. Vhdl2verilog. https://github.com/chisel-uvm/
vhdl2verilog.

[2] Krste et al. Asanovic. The Rocket Chip Generator. EECS Department,
University of California, Berkeley, Technical Report, (UCB/EECS-2016-
17), 2016.

[3] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew
Waterman, Rimas Avizienis, John Wawrzynek, and Krste Asanovic.
Chisel: constructing hardware in a scala embedded language. In The
49th Annual Design Automation Conference (DAC 2012), pages 1216–
1225, San Francisco, CA, USA, June 2012. ACM.

[4] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew
Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve
Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas. Manifesto
for agile software development. https://agilemanifesto.org/, 2001.

[5] William J. Dally, Yatish Turakhia, and Song Han. Domain-specific
hardware accelerators. Commun. ACM, 63(7):48–57, June 2020.

[6] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankar-
alingam, and Doug Burger. Dark silicon and the end of multicore
scaling. In Proceedings of the 38th Annual International Symposium
on Computer Architecture, ISCA ’11, pages 365–376, New York, NY,
USA, 2011. Association for Computing Machinery.

[7] Tristan Gingold. Ghdl. https://github.com/ghdl/ghdl.
[8] John L. Hennessy and David A. Patterson. A new golden age for

computer architecture. Commun. ACM, 62(2):48–60, January 2019.
[9] IEEE. 1800.2-2017 - IEEE Standard for Universal Verification Method-

ology Language Reference Manual.
[10] Richard Lin. ChiselTest. https://github.com/ucb-bar/chisel-testers2.
[11] Martin Schoeberl. Digital Design with Chisel. Kindle Direct Publishing,

2019. available at https://github.com/schoeberl/chisel-book.
[12] Martin Schoeberl and Morten Borup Petersen. Leros: The return of

the accumulator machine. In Martin Schoeberl, Thilo Pionteck, Sascha
Uhrig, Jürgen Brehm, and Christian Hochberger, editors, Architecture
of Computing Systems - ARCS 2019 - 32nd International Conference,
Proceedings, pages 115–127. Springer, May 2019.

[13] Wilson Snyder. Verilator: Your Big 4th Simulator: Roadmap. https:
//www.veripool.org/papers/Verilator Roadmap CHIPS2019b.pdf, 2019.

[14] Veripool. Verilator. https://www.veripool.org/wiki/verilator.
[15] Clifford Wolf. Yosys open synthesis suite. http://www.clifford.at/yosys/.

https://github.com/chisel-uvm
https://github.com/chisel-uvm/vhdl2verilog
https://github.com/chisel-uvm/vhdl2verilog
https://github.com/schoeberl/chisel-book
https://www.veripool.org/papers/Verilator_Roadmap_CHIPS2019b.pdf
https://www.veripool.org/papers/Verilator_Roadmap_CHIPS2019b.pdf
https://www.veripool.org/wiki/verilator
http://www.clifford.at/yosys/

