
Google/SkyWater and the Promise of the Open PDK

R. Timothy Edwards

SVP Analog and Platform

Efabless

San Jose, CA, USA

tim@efabless.com

Abstract—For over twenty years, silicon foundry Process
Design Kits (PDKs) have been a domain of secret knowledge,
non-disclosure agreements (NDAs), license servers, and password-
protected download sites. The lack of transparency is at odds with
today’s ever-expanding universe of open source software, leading
to an unusual niche for licensed commercial tools, and a very
difficult space in which to explore, grow, and diversify. To over-
come the problems inherent in this arrangement, the SkyWater
foundry has opened up its process description to the public, a
process driven and underwritten by Google and supported by
Efabless and a consortium of small companies and university
groups [1]. This presentation highlights the implications of having
a free and publicly-accessible foundry process description on
the small world of open source electronic design automation
(EDA) tools for custom silicon design, how the open source PDK
repository is beneficial to the worldwide chip design community,
how developers of open-source EDA tools can take advantage of
it, and where to move forward in a future of open-source tools
and hardware.

Index Terms—PDK, open source, EDA tools, foundry, VSLI

I. INTRODUCTION

The Google/SkyWater Open Source PDK [1] was launched

in July of 2020 with a repository on github under

google/skywater-pdk. It was launched in conjunction with a

talk by Tim Ansell to start the FOSSi foundation “Dial-up”

series of presentations [2]. Other than that, it launched with

relatively little fanfare due to the pandemic and corresponding

lack of in-person conferences, workshops, and other events,

and the difficulty of advertising an online event to a wide

audience. Nevertheless, the event had several hundred partici-

pants, and the accompanying Slack and IRC channels devoted

to the topic rapidly gained thousands of members [3].

The launch was preceeded by nearly a year of negotiations.

Behind the idea from the beginning was the SkyWater foundry

in Minnesota, one of a small and increasingly rare set of silicon

foundries based in the United States. Foundries that are on the

cutting edge of process technology tend to be very closed and

tight-lipped and are not expected to take seriously the idea of

making their foundry data public. However, those foundries

that support the substantial amount of manufacturing in well

established nodes (especially in the range of 0.5um down

to 0.18um) have tended to be more open and user-friendly,

alhough never before to the extent of releasing the technical

details of a foundry process to the public. For example, X-

Fab, which provides processes in the 0.35um to 0.18um nodes,

has been generous in allowing Efabless to make a number of

its IP libraries user-facing on the cloud-based efabless.com

platform, although some technical details remain hidden. The

open SkyWater process is a 130nm node, well suited to both

analog and (modestly sized) digital designs, and is a feature

size that has been around since 2001. Process options include

deep n-well, MiM capacitors, high and ultra-high sheet ρ

resistors, and isolated gate flash memory transistors (Fig. 1).

Fig. 1. Process stack of the SkyWater 130nm open process.

While the competitive nature of cutting-edge processes

means that the newest and most expensive processes will

remain proprietary and very closely guarded, there is a clear

business model recognizing the advantages of making older

and well established processes public knowledge. There is

little competitive advantage to be gained from keeping secret

information that is generally constrained by the machinery

used and therefore easy enough to duplicate. Certainly each

PDK represents a large amount of work by the foundry in

refining design rules and characterizing and modeling devices.

At some point, though, the problem becomes one of maintain-

ing non-disclosure agreements, tracking customers, providing

a large amount of customer support, and maintaing the PDK.

Dowload sites must be provided and maintained, errors must

be fixed, and documentation must be written and updated.

The foundry is generally considered responsible for providing

useful IP to the end user, including digital standard cell

libraires, padframe I/O libraries, RAM and ROM compilers,

and critical analog circuits such as crystal oscillators, voltage



regulators, bandgap references, and power-on-reset generators.

Much of this work has very little to do with day-to-day foundry

operations of manufacturing, and represent a huge overhead.

II. WHY IT MATTERS

The idea behind open-sourcing a PDK is to offload a large

number of tasks related to EDA tool support. By making

the repository publicly accessible, a community of end users

can provide mutual support for understanding how to use the

process with numerous tools. It is no longer the responsibility

of the foundry to provide this user support, maintain the

support for tools, or manage user submissions for multi-project

wafer runs. Errors that are found by the community will be

fixed by the community. Missing functionality will be provided

by the community as well. In the spirit of open source, the

vast majority of this support and IP will itself be provided

under open source licensing.

For the designer, the gains are very clear: There is no

longer a need to sign NDAs, and no concern over what

information may or may not be shared with others, especially

tool developers who may need to see a failing example in

order to properly debug a problem with the software. Entire

designs may be published including schematics and layout

without restrictions; and designs may be placed into public

repositories like github and gitlab, ready to be downloaded

and sent to manufacture, or used within another design, or

modified, improved, and re-published as a “remix”.

In this way, the design of hardware can look much more

like the design of software or the design of 3D-printed

things: Public, dynamic, ever changing, and ever improving.

The greatest promise is that of democratization: The shifting

of custom hardware design from a handful of large and

established companies and well-funded research universities

to individuals, small companies and startups, lesser-known

universities, colleges, and even high schools. In-house design

will give way to vast project collaborations spanning the globe.

III. A HISTORY OF OPEN SOURCE PDKS

The proprietary and closed nature of foundry processes

was certainly aided and abetted by the commercial EDA tool

vendors. There are only a few of these vendors, and they can

maintain their dominance because support for their tools and

formats is the burden on the foundry, so it is in the foundry’s

best interest to limit the number of tools to support.

In the early boom days of silicon manufacture, mainly

through the late 1980s and early 1990s, many design tools

were in fact open source, and many (SPICE, magic, VIS/SIS,

etc.) were distributed freely before this became a common

practice in software (all the above-mentioned tools predate

Linux by at least seven or eight years). The MOSIS foundation

in particular supported multiple foundries and processes with

a partly open-source PDK which it called SCMOS (scalable

CMOS). However, at the time, the foundry nodes repre-

sented by SCMOS were still considered advanced, and the

information still tightly guarded. The SCMOS PDKs only

worked because they used conservative rules that did not

reveal manufacturing limits; device models and parameters

were not freely available and could only be obtained through

an NDA with MOSIS. While IP libraries designed with the

SCMOS PDKs are still available, MOSIS has dropped support

for these PDKs, making them equivalent to the so-called

“academic” PDKs such as FreePDK45 which are available for

use but unconnected to any specific foundry and therefore not

manufacturable [4]. The Google/SkyWater PDK goes much

further than the SCMOS PDKs from MOSIS ever did: Not

only are the exact design rules of the foundry available, but

even specialty rules such as rules for compact SRAM core

cells and for flash memory cells are made public, as well. All

device models and parameters, characterized at corners, are

part of the repository.

In a sense, the huge amount of available data in the open

source PDK provides a new challenge: The older tools that

once worked with the SCMOS PDKs never had the depth

and breadth of access to IP and formats. The new PDK

provides everything needed for full toolchains, whether analog,

digital, or mixed-signal. The older tools do not have the

complete integration that the commercial EDA tools enjoy,

having traditionally had only a fraction of the files and formats

available to use. Much of the work on preparing and uploading

the Google/SkyWater PDK into the github repository has been

to prepare a complete set of files in standard, mostly human-

readable, non-proprietary formats, and to organize them in

ways that can be standardized and used by open source tools

looking to the future. It is now needed for the open source

EDA tool developers to take advantage of the organization

of files and formats, and to create the tool integration into

complete flows that is so badly needed.

IV. RELEVANCE TO EXISTING TOOLS

It is not strictly necessary for an open source PDK to be

used with open source tools. But it is the goal of Google to

make sure that open source tools are given top priority for

support by ensuring that the PDK data and IP libraries are all

in common formats that are well described and easy enough

for an open source tool developer to code or obtain a parser

for. This prioritization of common formats over proprietary

formats creates an opportunity for open source EDA tool

developers to fill the gaps in tool capabilities with an ease

and speed not seen since the early days of EDA software.

The most obvious benefit to having an open PDK for open

source EDA tool development is simply the fact that when

bugs are found in the tools, an example can be sent to the

developer to reproduce the error exactly, avoiding the need

to obfuscate the example or find a similar example using

an SCMOS or “academic” process. The lack of transparency

inherent in proprietary PDKs slows open source tool devel-

opment, severely restricting the gains that are expected from

open source development: Rapid response with the ability to

upgrade a tool or PDK immediately upon a fix becoming

available. Case in point: Upon release of the “Openlane”

digital flow for the SkyWater process, users discovered a

problem with the “netgen” open source LVS tool, in which a



symmetry-breaking routine at the end had a O(N2) or greater

execution time, causing LVS to take hours to complete. Once

this issue was raised, I was able to pin down the problem, and

by the next day the run-time for netgen had been reduced to

a few minutes. Upon announcing the fix on the public Slack

channel, the users patched their tools, and by the end of the

day multiple users had confirmed the fix and moved forward

with their designs, a turn-around time unheard of in the closed-

source commercial world.

The second most obvious benefit of the open PDK is the

lack of license servers and the overhead in maintaining them.

Improperly working license servers (or simply an expired

license) are an impediment to design, and can cost designers

days of delay while issues are sorted out.

A third benefit to the open PDK is the ability to reach a

commmuity consensus on what file formats are the best to use.

This avoids the need to rely on proprietary formats, which are

tightly controlled by commercial EDA tool consortiums and

very slow to correct problems and adapt to new or different

design methods.

The promise of open source EDA tools is already ap-

parent in the projects associated with the roll-out of the

Google/SkyWater PDK: The OpenRAM project [5] seeks to

put the generation of SRAM, ROM, and flash memory into the

hands of the designer, and with full visibility of the process,

keep this set of critical IP blocks from being some mysterious

thing to be trusted, but not inspected. The Oklahoma State

University (OSU) standard cell library [6] is not only a

valuable IP library, but is presented along with the complete set

of tools and methodology used for design and characterization.

The Openlane flow from American University in Cairo (AUC)

[7] is a digital synthesis flow based around the OpenROAD

tools from UCSD (and others) [8] with specific attention

to established process nodes, with specific setups for the

SkyWater 130nm process. Openlane has already filled in one

of the outstanding gaps in open source tools by integrating

design-for-test (DFT) methodology into the synthesis flow [9],

and provides the ability to do chip top level assembly and

signal routing. This is just a sampling of the groups starting

to form a valuable ecosystem around the open source PDK.

As a demonstration that existing open source EDA tools

are already capable of handling the end-to-end design of a

complete custom chip, Efabless designed and produced a series

of RISC-V microprocessors, collectively named “striVe,” and

made entirely with open source EDA tools and containing

exclusively open source IP (Fig. 2). When the full set of

IP libraries used by the striVe chip designs has been put in

the Google/SkyWater repository, these designs will be placed

in the Efabless github repository and available for anyone to

download, inspect, and use.

V. RELEVANCE TO FUTURE TOOLS

The installation and maintenance of PDKs on the user

end is an often overlooked overhead cost for chip design,

but tracking updated from the foundry side and maintaining

proper versioning is a large task, and usually companies or

Fig. 2. StriVe2, a RISC-V SoC created with Openlane and featuring an SRAM
memory block compiled by OpenRAM. Designed by the Efabless team using
all open source tools, and manufactured by SkyWater foundry in the 130nm
open process.

universities with site-wide licenses for running the commercial

EDA tools will have a dedicated person or team devoted

solely to PDK maintenance. One of the biggest challenges

needed to make the open PDK ecosystem work well is an

integrated system of tools for multiple work flows [11]. The

Openlane digital synthesis flow cited above works well for

digital synthesis and chip assembly. However, a complete

ecosystem needs analog and mixed-signal flows as well, and

an overall common infrastructure for the files needed both for

tool setups and IP libraries. My own contribution to this is the

“open pdks” tool [10], which is a GNU automake/autoconf

system utilizing various shell and python scripts to prepare

the right files and environments for different open source tools

such as ngspice, magic, klayout, netgen, and openlane.

While digital synthesis flows are powerful and go hand

in hand with open source desigs in hardware description

languages, there will always be a need for traditional analog

design. The need for open source analog design flows reveals a

glaring gap in the ecosystem: No common agreed-upon format

for schematic editing and capture. I have been working with

interns over the summer to help determine what such a format

should look like, and to generate useful tools in support of

analog design flows. I am leaning toward using the xschem

[12] format as the “standard” schematic and symbol format,

and supporting additional formats with translation scripts (yet

to be written). One important project in progress defines a

common set of symbols that can be prepared as a library for

any of a number of schematic entry tools (xschem, xcircuit,

XIC, KiCAD) and a tool to map standard technology files

(liberty, LEF, SPICE) to the symbol library (Fig. 3). One intern

started a project to automatically generate schematics from

SPICE netlists. But a large amount of work remains to be

done to define proper analog and mixed-signal design flows.



Fig. 3. A common set of symbols to map a PDK digital library to open
source tools, courtesy of Stefan Schippers.

Another area where proprietary formats dominate and there

are no suitable open source equivalents is design rule checking

(DRC), also an important part of analog and mixed-signal

design flows. The industry-standard format, Calibre, is tied

to the tool that uses it, and is not even necessarily appropriate

for other tools like Magic that have a fundamentally different

database and use different methods for design rule checking.

Also, the format is essentially a list of database operations

to perform, not a description of rules, and as such is not

very human-readable. But DRC rule types, especially for

established nodes, are limited in number. They can and should

be presented in a universal format that can be used both for

generating the setup files for the tools that do the checks, and

for automatically generating the documentation that describes

the rules.

In both these cases (schematic files and DRC rules), an open

format is best for being adaptable to the needs of different tools

and different users. It is important not to “lock in” a format

but let it evolve with the needs of the design community.

The Google/SkyWater open-source PDK is not merely an

academic exercise. Google is underwriting multi-project wafer

(MPW) runs on the SkyWater process with the express purpose

of encouraging designers to use the process and the open PDK

to explore the boundaries of the design space. Management

of the design submissions falls to Efabless, where we have

prepared a one-size-fits-all chip “harness,” or container (called

“Caravel”, after the type of sailing ship used for early ex-

ploration and trade) for holding user designs. The MPW run

management itself provides new challenges for open-source

EDA tools, since automatic fill pattern generation and optical

correction are topics we may need to consider, but have not

been in the scope of open source tool development. The sheer

amount of data involved in the preparation of an MPW is also

likely to stress the limits of a number of tools.

VI. CONCLUSIONS

The Google/SkyWater 130nm open PDK is now available to

the public on github as the first ever fully open-source silicon

foundry process description, including fully open-source IP

libraries in formats suitable for open-source EDA tool design

flows. A thriving ecosystem of tools and tool development

is already forming around this online offering, aided by the

promise of unrestricted access and a new ability to experiment

and explore the possibilities and limits of a foundry process

without the burden of NDAs, closed-source software, and

limited available IP from “trusted” vendors. The current state

of EDA tool development for all types of design flows is

rapidly progressing, led by digital synthesis tools. A large

amount of work remains to be done for integrating tools,

methods, and formats for analog and mixed-signal design

flows, and for full-chip assembly and design verification. The

community must ensure that these tools and formats remain

fluid and adaptable, such that the promise of open-source

hardware can match the universally-understood benefits of

open-source software.

ACKNOWLEDGMENT

I would like to thank Jeff Carr of Wit for getting the ball

rolling, Mohamed Kassem of Efabless for keeping it moving,

and to Tim Ansell of Google for seeing the project through

to fruition. But a hundred voices made it happen, and there is

not enough room to thank them all.

REFERENCES

[1] Tim Ansell, “Google/Skywater open PDK,” https://github.com/google/
skywater-pdk

[2] The FOSSi Foundation, “FOSSi Dial-Up,” https://fossi-foundation.org/
dial-up/

[3] “Google + SkyWater FOSS 130nm Production PDK,” https://join.
skywater.tools/

[4] “N.C. State University FreePDK45,” https://research.ece.ncsu.edu/eda/
freepdk/freepdk45/

[5] M. R. Guthaus, J. E. Stine, S. Ataei, B. Chen, and B. Wu, M. Sarwar,
“OpenRAM: An Open-Source Memory Compiler,” Proceedings of the
35th International Conference on Computer-Aided Design (ICCAD),
2016.

[6] James Stine, “Oklahoma State University System on Chip (SoC) Design
Flows,” https://vlsiarch.ecen.okstate.edu/flow/

[7] Mohamed Shalan, “OpenLANE,” https://github.com/efabless/openlane
[8] T. Ajayi, V. A. Chhabria, M. Fogaa, S. Hashemi, A. Hosny, A. B.

Kahng, M. Kim, J. Lee, U. Mallappa, M. Neseem, G. Pradipta, S. Reda,
M. Saligane, S. S. Sapatnekar, C. Sechen, M. Shalan, W. Swartz, L.
Wang, Z. Wang, M. Woo and B. Xu, “Toward an Open-Source Digital
Flow: First Learnings from the OpenROAD Project,” Proceedings of the
ACM/IEEE Design Automation Conference, 2019.

[9] Mohamed Gaber, Manar Abdelatty and Mohamed Shalan, ”Fault, an
Open Source DFT Toolchain,” Proceedings of the Workshop on Open-
Source EDA Technology (WOSET19), November 2019.

[10] R. Timothy Edwards, “Open PDKs PDK Installer for open-source
tools,” http://www.opencircuitdesign.com/open pdks

[11] R. Timothy Edwards, “The New Golden Age of Open Silicon,” Keynote
presentation, Workshop on Open Source EDA Technology (WOSET)
2019.

[12] Stefan Schippers, “XSCHEM: schematic capture and netlisting EDA
tool,” https://xschem.sourceforge.io/stefan/index.html


