
A Push-button Idea to GDS-II SoC Design Flow
Habiba Gamal1, Amr Gouhar2, and Mohamed Shalan1

1The American University in Cairo, New Cairo, EGYPT
2eFabless Corporation, San Jose, USA

Abstract—SoCGen is a system on chip (SoC) design automation
tool that takes in a simple JavaScript Object Notation (JSON)
description of the system’s components, connections and struc-
ture. The tool then outputs the Verilog HDL for the SoC, the
intermediate files of hardening and the final GDS-II. SoCGen
utilizes OpenLANE, an automatic RTL to GDS-II physical design
flow. SoCGen is tailored for SoCs intended for internet of things
(IoT) and deep embedded applications.

Index Terms—SoC, Design, Automation, System on Chip, EDA,
AMBA, AHB, APB, Bus, Master, Slave, GDSII, ASIC, flow, RTL,
IP

I. INTRODUCTION AND PROBLEM STATEMENT

System on chip (SoC) design and manufacturing has be-
come one of the necessities of the modern Integrated Circuit
(IC) design world. In this new world, time is critical. When the
designer finds a bug after a long process of creating a GDS-II,
the designer has to go through a lengthy process of reviewing
Verilog codes, followed by re-hardening the chip. However,
because of the systematic nature of the process, there has been
a rising interest in developing open-source tools for carrying it
out. In addition, there are similarities between different SoCs
in their standard intellectual properties (IPs). Henceforth, came
the idea of automating the Verilog RTL model generation of an
SoC utilizing a verified open-source IPs library that is easily
extensible by the users, followed by using OpenLANE for
the GDS-II generation. Thus, automating the full flow from
creating the hardware description language (HDL) code of the
design to generating GDS-II.

SoCGen is an SoC design automation tool that takes a
simple, schematic-like description of the SoC architecture and
generates the final GDS-II without any human intervention.
This tool is useful in many scenarios, two extremities of which
will be discussed. The first scenario is enabling end-users who
are not experienced in SoC design to easily tape-out chips with
the desired system behavior. All the user has to do is describe
the system architecture in a simple format, then start the flow.
Firstly, the verified Verilog files are generated, followed by
generating the GDS-II utilizing OpenLANE. The end-user can
effortlessly make modifications to the system archirecure and
generate the GDS-II again.
The second scenario is experienced SoC designers using SoC-
Gen. In this case, the designer can review the generated files at
each intermediate step of hardening then do the required mod-
ifications to address any concerns. In addition, experienced
designers can benefit from the flexibility of the tool and the
ease of reiterating the design through the flow. This being
said, the designer can test different configurations or system

architectures to achieve the required system behavior, while
meeting certain constraints. Therefore, SoCGen will allow
designers to focus more on the block system design, while
leaving the hectic process details for SoCGen.

Therefore, the problem discussed in this paper is automating
the whole process of designing an SoC. Nevertheless, there are
many challenges when tackling such a universal problem.

1) Attaining a comprehensive description methodology to
represent any potential IP adequately.

2) Circumscribing how the connections between the differ-
ent IPs, buses, and masters are amply described.

3) Parsing the representation and generating the proper
format and connections of all the Verilog modules that
make up the SoC.

4) Adhering to an acceptable runtime period to fulfill
the purposes of the automation process and render it
attractive to designers. Thus, the efficiency of the process
is critical, and its maintenance is inevitable to keep the
project updated with the most modern technologies.

5) Usability and achieving the no-man-in-the-loop goal,
while ensuring the accessibility of all the files and gen-
erated outputs of the intermediate stages of the process
to the designers to discern and reform.

6) Avoiding huge compromises in the quality of the work
produced, if compared with a fully manual design pro-
cess. Hence, we articulate our project’s objectives as ver-
satility, usability, extensibility, reliability, competence,
and efficiency.

Therefore, this project aims to create a universal description
methodology that is comprehensive enough to include all
potential IPs, masters, and SoC architectures intended for
internet of things (IoT) and deep embedded applications. In
addition, SoCGen seeks to automate the processes of signals
connections, hardening macros, and creating the chip-level
GDS-II. SoCGen intends to achieve all the previous objectives
in an efficient and versatile manner while having a flexible
infrastructure with a user-friendly interface.

The remainder of this paper goes as follows: in the next
section, we outline the current features of SoCGen and the
implementation details of some of its components. Section 3
describes the integration with the OpenLANE flow to fulfill the
goal of automatic GDS-II generation. In Section 4, we describe
the experiments tried by SoCGen. Finally, we conclude and
explore viable future work.



II. FEATURES AND IMPLEMENTATION DETAILS

SoCGen supports AMBA Advanced High Performance Bus
(AHB) and AMBA Advanced Peripheral Bus (APB). Masters
can only be placed on AHB’s. For details about AMBA AHB
and APB, refer to chapter 3 in [1]. However, SoCGen is
flexible when it comes to the number of masters that can
exist on the same bus. Furthermore, a single master can be
connected to multiple AHB’s. As for the APB sub-systems,
they can only be placed under AHB’s. For the communication
between AHB and APB sub-systems, a bridge is generated.
The aim behind the AHB-APB bridge is to convert the
AHB signals into APB signals and vice versa. For instance
HWRITE, HADDR and HWDATA are changed into PWRITE,
PADDR and PWDATA to be used by the APB peripherals. The
bridge also converts the APB signals into AHB signals. For
instance, PREADY and PRDATA are changed into HREADY
and HRDATA. In a nutshell, the AHB-APB bridge enables the
communication between AHB and APB by making the APB
sub-system act like a slave on the AHB, and making the AHB
act like a master on the APB. An arbitrary number of APB
subsystems can exist on the same AHB.

Regarding the hierarchy of the generated system, at the top
level exists the board which is equivalent to the testbench
generated in the HDL of the SoC. This includes the SoC chip,
or an instance of the SoC in the generated HDL. The SoC
includes the SoC core which encompasses the masters and
the AHBs. The AHB instantiates the APB sub-systems. The
hierarchy is shown in Fig. 1.

Fig. 1. System hierarchy

As for the peripherals, SoCGen supports both bus-specific
peripherals and generic peripherals. Generic peripherals are
components that are not compatible to a specific bus. SoCGen
supports the use of generic peripherals through automatically
generating bus-specific wrappers. The aim of said wrappers
is to map the ports and the registers of the peripheral into
bus signals, through assigning each peripheral a base address,
and each register an offset address. Therefore, each register
becomes addressable by the master on the bus. The number
of address bits, as well as, the base address of the peripherals
and the APB sub-systems, in addition to the register offsets,
can all be specified by the designer in the JSON.

The peripherals can be soft modules or hard macros. This
characteristic can be specified in the JSON description of the

IP. For generic soft modules and hard macros, their wrappers
are placed on the bus. However, soft modules are instantiated
and directly connected to the wrappers at the bus level. In
contrast, for hard macros, the wrapper signals are propagated
to the SoC core where hard macros are placed and connected
to said wrapper signals. Regarding bus-specific soft modules,
these are placed directly on the bus. On the other hand, for
bus-specific hard macros, the bus signals are propagated to the
SoC core where the hard macros are placed and connected to
said bus signals.

The library of IPs encompasses description of different IPs.
The IP description includes, but is not limited to, its external
ports, registers, connection to other modules, connection to
input/output (I/O) pads and bus type. The library of IPs
currently includes a set of verified open-source components
including: UART, timer, PWM, watchdog, SPI master, I2C
master, GPIO, QSPI flash controller and SRAM controller.
Some of these IPs are generic, while others are bus-specific.
Some of the IPs like the I2C master, SPI master, timer, PWM
and GPIO have c files and header files that are used during
testing with real masters. In addition, SoCGen has open-source
verification IPs for PWM, GPIO, the I2C master and the SPI
master. The IPs library is easily extensible by end-users. The
IPs library facilitates reusing IP blocks that are commonly
similar in different SoC designs.

For the communication between the SoC core and the
outside world, I/O pads are needed. SoCGen by default has an
I/O pads library which describes the ports of the I/O pads. The
library of I/O pads includes four different types of general I/O
pads that are not process specific. These are: analog, digital
input/output, digital input and digital output. The designer can
easily add to this library process-specific I/Os, or his/her own
set of general I/O pad definitions. Moreover, the designer can
specify the placement level of components that are not on
the bus, as well as, the connections of the external ports of
bus peripherals to components that are not on the bus. For
instance, an SRAM controller would be placed on AHB and
its external ports would be connected to the SRAM which is
placed inside the SoC core. This can be specified by the JSON
description of the SoC. Furthermore, a flash controller would
be placed on AHB while its external ports would be connected
to the flash that is placed in the testbench. In different terms,
the flash is placed outside the chip of the SoC, on board.
In addition, the external ports of peripherals like the SPI
master, I2C master and GPIO, which can be placed on APB,
may be connected to verification IPs (VIPs) which simulate
connections to components that are placed outside the SoC
chip, on board. All these different connectivity examples can
be specified in the JSON for the SoC.

As for testing, in case of the presence of a real master (e.g.
ARM Cortex M0), SoCGen has a debug peripheral for self-
checking testbench generation that the user can place in a
design. The debug peripheral is simply a debug register used
during testing. A specific pattern is used to indicate a passed
test, while another pattern is used to indicate a failed test.
Furthermore, SoCGen automatically generates a dummy mas-



ter in case of the absence of a real master. The dummy
master performs read and write transactions with every register
in the system to verify the expected system communication
requirements. SoCGen also outputs hierarchical testbenches.
In other words, SoCGen outputs a testbench for each APB-
subsystem, a testbench for each AHB system and a top-level
testbench for the whole SoC. The specifications of the top-
level testbench can be speficied in the JSON for automatic
generation. For instance, the number of ticks can be specified
and the path of the file that will be loaded into the flash.

SoCGen also has a masters library that includes definitions
for ARM Cortex M0, ARM Cortex M3 and N5, an open-
source core. Currently, the master has to be compatible with
AHB. The masters library includes description for the connec-
tions of the master’s bus interface to the bus signals, as well
as, the default connections of the master ports and the interrupt
lines. The masters library is easily extensible by the designer.
In case of the absence of a real master, if a user only wants
to test the system structure without the real master, a dummy
master is automatically generated by SoCGen as described
before.

An arbiter is generated in case of the presence of multiple
masters on the same bus. The role of the arbiter is to grant
the bus to only one master requesting the bus based on the
priority of the master. In AMBA terms, the arbiter takes
the HBUSREQ signal from each master and generates the
HGRANT signal. The master that is granted the bus starts
the bus transaction. The bus signals generated by said master
that are sent to AHB are selected by multiplexer, as shown in
Fig. 2. The mentioned arbiter and multiplexer are taken from
GEN AMBA [7]. GEN AMBA does not generate complete
SoCs, but rather it generates bus skeletons for AMBA AHB,
APB and AXI. Therefore, it does not connect subsystems,
generate bus wrappers for generic peripherals, or connect
the masters and peripherals to the bus ports. In addition,
GEN AMBA offers less flexibility than SoCGen since it does
not allow the user to specify the addresses of peripherals or
buses.

Fig. 2. Multiple masters on the same AHB

In the case of having the same master present on multiple
buses, a multiplexer is needed to select between the return
signals of each bus based on the value of the address signal
(HADDR). In a particular transaction, HADDR would be
meaningful to a certain bus while it would be in the invalid

range for the other buses. The multiplexer will filter the return
signals of each bus, using HADDR of the transaction as the
select line, to select the corresponding bus signals. The block
diagram is shown in Fig. 3.

Fig. 3. One master on multiple AHB’s

III. INTEGRATION WITH OPENLANE
Once SocGen generates the RTL, OpenLANE handles the

remaining of the process [6]. OpenLANE is an automated
RTL to GDS-II flow that utilizes many open-source tools,
including Yosys, OpenROAD, Magic, Netgen, and its custom
scripts [2] [3] [4] [5].

As for how SoCGen uses OpenLANE, firstly, hard IPs are
hardened. If there are no hard IPs in the design, this step
is skipped. Then the SoC is flattened with the soft IPs and
hardened as a core without the pad frame. The hard IPs are
included as macros and are placed as-is inside the core. Finally,
the chip is hardened with the pad frame.

Currently, the integration of SoCGen with OpenLANE is
not fully automated. In other terms, OpenLANE was manually
run utilizing the RTL output of SoCGen. However, in order to
achieve this simple integration, SoCGen needs to automatically
call OpenLANE after the HDL of the SoC is generated. In
addition, each of the hard IPs in the IPs library should have
a configuration file included in its library description. The
configuration files should be optimized before adding them
to the library, and thus the IPs could be optimally hardened
without the need for any input from the designer; however, the
designer has full control to enforce any modifications. SoCGen
will generate default configurations for the SoC that would
allow it to run through the OpenLANE flow. Alternatively,
the user could provide these configurations. In both cases,
the user could utilize the exploration scripts of OpenLANE
or the analysis of the generated results to optimize those
configurations to obtain a DRC and LVS clean GDS-II or
achieve better results based on a user-specific metric. After this
step, the generated core is treated as a macro on the chip and
is hardened along with the pad frame to generate the GDS-II
for the whole chip. The configurations of this step should also
be automatically generated by SoCGen or optionally provided
by the user. In either case, the user will have the ability to
modify these configurations to achieve the design goals. The
final results of the generation would be the GDS-II of the



chip, the LEF/DEF views, and all the intermediate files and
logs generated by OpenLANE. OpenLANE is integrated with
the SKY130 Open PDK, including different libraries for the
standard cells [8]. However, the user could use any other PDK
as long as the user configures OpenLANE to use it.

IV. EXPERIMENTATION

SoCGen was used to create different SoC designs. One of
them is a system with a single master placed on AHB. A
flash controller and SRAM controller are also placed on AHB,
along with a GPIO with 16 I/O ports. There is an APB sub-
system on said AHB that includes I2C master, SPI master,
timer and PWM. The I2C master, SPI master, PWM and GPIO
are connected to verification IPs that exist in the testbench,
or in other words on board outside the SoC chip. The flash
controller is also connected to the flash that is placed on board
and not on the SoC chip. The SRAM controller is connected
to the SRAM that is placed inside the SoC core. The external
ports of the I2C master, GPIO, SPI master, flash controller and
PWM are connected to I/O pads that are placed on the SoC
chip outside the SoC core. This system structure can all be
specified in the JSON. The described SoC is shown in Fig. 4.

Fig. 4. A system on a chip architecture

Upon the press of a button, the Verilog files for this system
are generated, along with a self-checking testbench since the
debug peripheral was included in the design. In a couple of
seconds, the whole SoC is generated and tested for verification
of expected system behavior without any human intervention.
The described system was generated and verified using three

different masters: ARM Cortex M0, ARM Cortex M3, and
N5, an open-source core.

The GDS-II for the SoC core in Fig. 4, using ARM Cortex
M0 as the master, was generated using OpenLANE in less than
14 hours. The design is composed of about 121K cells. The
die area is 3mm x 3mm. The design is DRC and LVS clean.
The hardening was done using the high density standard cell
library from the SKY130 Open PDK [8]. The layout of the
automatically generated GDSI-II is shown in Fig. 5.

Fig. 5. Layout of the generated SoC

V. CONCLUSION

This paper presents an SoC design automation tool that
starts with a simple description of the system architecture and
automatically generates the SoC layout utilizing the SKY130
Open PDK. The tool has been tested by generating a verified
SoC composed of open-source components and its hardening
was DRC and LVS clean.
For the future work of this project, we aim to support more
bus types such as the AMBA AIX-4 and the Wishbone buses.
Also, we plan to add early stage estimators for area, power
and clock frequency.

VI. ACKNOWLEDGMENT

SoCGen is a publicly available, open-source project that can
be found at https://github.com/habibagamal/SoC Automation.
Taking the extra mile of generating GDS-II from RTL would
not have been possible without the efforts of the OpenLANE
development team, especially Karim Farid and Ahmed Ghazy.

REFERENCES

[1] Joseph Yiu, ”System-on-Chip Design with Arm Cortex-M Processors,”
Arm Education, 2019.

[2] Clifford Wolf and Johann Glaser, ”Yosys - A Free Verilog Synthesis
Suite,” Proceedings of Austrochip, 2013.

[3] The OpenROAD Project, https://theopenroadproject.org/ https://github.
com/The-OpenROAD-Project

[4] Magic, https://github.com/RTimothyEdwards/magic
[5] Netgen, https://github.com/RTimothyEdwards/netgen
[6] OpenLANE, https://github.com/efabless/openlane
[7] GEN AMBA, https://github.com/adki/gen amba
[8] SKY130 PDK, https://skywater-pdk.readthedocs.io/

https://github.com/habibagamal/SoC_Automation
https://theopenroadproject.org/
https://github.com/The-OpenROAD-Project
https://github.com/The-OpenROAD-Project
https://github.com/RTimothyEdwards/magic
https://github.com/RTimothyEdwards/netgen
https://github.com/efabless/openlane
https://github.com/adki/gen_amba
https://skywater-pdk.readthedocs.io/

	Introduction and Problem Statement
	Features and Implementation Details
	Integration With OpenLANE
	Experimentation
	Conclusion
	Acknowledgment
	References

