

CVC: Circuit Validity Checker

An open source netlist reliabilty verification system

D. Mitch Bailey

Shuhari System

Fukuoka, Japan

d.bailey@shuharisystem.com

https://github.com/d-m-bailey/cvc

Abstract— This paper presents a device level static verification

system for quickly and easily detecting common circuit errors in

CDL (Circuit Definition Language) netlists. The system includes

the capability to define device parameters and voltages for

multiple modes in Microsoft Excel, an interactive option for

examining intermediate values, and a GUI for analyzing the

results. Errors detected are similar to those found using Mentor’s

Calibre-PERC [1] or Synopsys’ CCK [2]. CVC has been used on

dozens of DRAM and SOC designs of up to 3B devices.

Keywords—CVC, reliability verfication, PERC

I. INTRODUCTION

The design of mutli-million gate chips often involves several
distinct teams and can include third party modules. Circuit errors
can occur for a variety of reasons and may be difficult to detect.
For example, interactions between components are expected to
follow specifications, but detailed simulation of the full chip to
verify the correctness of the specifications is rarely possible
because of time constraints. Additionally, spare circuitry
connected incorrectly may not be detected because it is assumed
to be inactive and therefore not included in some simulation
flows. Also, while logic circuit analysis is relatively straight
forward, over conservative static analysis of analog circuits can
result in too many errors to reasonably verify before tapeout.
CVC (Circuit Validity Checker) was developed to quickly
pinpoint circuit errors in mixed-signal and low-power designs,
including those errors that are difficult to detect with other
simulation or verification tools.

II. CVC

A. Philosophy

CVC was designed as a full chip verification system, and
accordingly, uses the device level LVS (Layout vs Schematic)
netlist as input. This avoids the problems caused when the
simulation netlist does not include all the devices in the layout.
CVC differs from other tools which detect similar errors in that
there is no coding required by the user and all errors for a
particular mode are detected in a single run. The user specifies
the voltages for the necessary nets, the parameters for each
device type, and optionally a few runtime settings. This prevents
errors missed due to not running all checks or forgetting to
include rules for every device model.

B. Input Parameters

CVC is able to verify netlists with both enhancement and
depletion mode n-mosfets and p-mosfets - including LDD

(lightly doped drain) devices - bipolar transistors, diodes, and
two or three terminal resistors and capacitors. These primary
devices may additionally be treated as switches or fuses which
may be either on or off. Mosfets require a Vth (threshold
voltage) setting and any device may have a maximum allowable
voltage specified across any two terminals.

Each voltage definition has a minimum value, a simulation
value, and a maximum value. For external power definitions,
normally these three values are equal. Internal power definitions
may be a minimum and/or maximum limit, a simulation value,
or any combination. Voltages are defined from -32V to 32V at
0.001V precision. The voltage levels for nets defined as resistors
are automatically calculated using Ohm’s Law. Variable input
signals are defined with minimum and maximum values only.
Voltage levels can be expressed as equations using previously

defined nets and mosfet Vth, e.g. VDD+Vth[PCH]. Power nets
may be defined as ‘open’, which will result in an error if
propagation could result in a current leak. Nets may be defined
using wildcards as in Unix shell or regex and may be defined at
any level of the hierarchy by using a

*(circuit_name)/net_name syntax.

Minimum and maximum power are propagated
simultaneously throughout the entire circuit, while simulation
values are only propagated when known. After each propagation,
certain types of errors are detected.

C. Error Types

Min/max errors

Mosfet gate vs source: mosfet gates that will never be fully
off. The minimum gate voltage for an n-mosfet is greater than
its minimum source voltage or the maximum gate voltage for a
p-mosfet is less than its maximum source voltage.

Mosfet source vs bulk: forward biased junction diode. The
minimum source voltage for an n-mosfet is less than its
maximum bulk voltage or the maximum source voltage for a p-
mosfet is greater than its minimum bulk voltage.

Forward bias diodes: diodes that are not always reversed
biased. This includes parasitic diodes on 3 terminal resistors or
capacitors.

LDD errors: For devices defined as LDD (source and drain
are not interchangeable), an error is flagged if the drain is closer
to ground than the source for n-mosfets and if the drain is closer
to power than the source for p-mosfets.

mailto:d.bailey@shuharisystem.com
https://github.com/d-m-bailey/cvc

Simulation errors

Leaks: any static leak between external power or any leak
above a defined threshold for other signals.

Simulation and min/max errors

Hi-Z (high impedance) leaks: After simulation propagation,
if a gate net has no path to both power and ground, it is
considered as a possible Hi-Z input error. If the min/max paths
for the mosfet source/drain are to different power nets, then the
mosfet is flagged as an error.

Possible leaks: a mosfet connected between 2 different
external power nets will be flagged as an error if the simulation
level is unknown. This detects errors when gate outputs are tied
to power, but input nets are unknown.

Electrical overstress: the maximum voltage across two
terminals exceeds the defined limit. Optional conservative
checks include the voltage levels before simulation propagation.

Expected values: expected values may be set for the
min/sim/max value of any net. After the final propagation, errors
are raised if the expected value does not match the calculated
value. An expected value of ‘open’ will flag an error if there is
a path to any power net.

D. Program Flow

CVC is written in C++ for speed and parses the netlist with
bison/flex. All strings from the netlist are compactly and
uniquely stored in an obstack structure [3] and referenced by
address. As a typical example, the text for an 800MB netlist is
read in less than 2.5 minutes and stored in less than 25MB of
memory. The netlist is flattened internally and switches are
shorted. Voltage drops across resistors are calculated where
possible, followed by the first min/max voltage propagation and
relevant error detection. During the subsequent simulation
voltage propagation, current leaks are flagged. Using the results
of the simulation voltage propagation in the final min/max
propagation allows us to detect true Hi-Z input errors while
ignoring errors with no leak path. Table I shows representative
runtimes for a 700M device DRAM design.

TABLE I. CVC RUN TIMES

Stage Time (s)
Total Memory

(GB)

Input 151 14

Flatten 29 72

Resistor 117 72

First min/max propagation 1174 72

Simulation propagation 198 78

Final min/max propagation 1308 79

Total 2977 79

III. INTERACTIVE MODE.

CVC has an interactive mode that allows the user to show
the propagated voltages at each net and examine the netlist.
Starting at the top level of the netlist, the hierarchy may be

traversed using the Unix directory command, cd, and pwd will
display the current hierarchy. Command history and file name
completion are also available. Wildcards are supported for

listing nets and devices. For example, listnet V* will list all
nets in the current hierarchy that begin with ‘V’.

findnet foo* will list all nets below the current hierarchy
that match foo* and show the highest net name for that net. A
sample output might be
/Xtop/Xmid/Xmon/foobar -> /Xtop/foo1 .

findsubcircuit INV* will list the full hierarchy for each
instance of the subcircuits that begin with ‘INV’. In addition to
the usual manner of displaying a hierarchical item,

/XTOP/XMID/XINV/OUT,
there is an option to include subcircuit names,

/XTOP(TOP)/XMID(IOBLOCK)/XINV(INV)/OUT.

printcdl test will write the subcircuit ‘test’ and all its

children to a file. The debug command will create the files
necessary (CDL, power, and environment file) to run CVC on a
specified instance of the netlist. This can simplify and speed the
analysis of IP.

IV. GUI

CVC and other ERC (electrical rule check) tools can
generate many false errors. Some errors are caused by
incorrectly propagating voltages in analog circuits while others
may be intentional (i.e. gate vs source errors in level shifters).
The user must decide whether to add or change the assigned
voltages to eliminate the error or flag the error as an exception.
While some tools hide all exceptions in the final report, the
philosophy of CVC is to use the analysis GUI to tag each error
according to its severity. Errors are listed by type and show the
lowest level subcircuit and device name along with the number
of error instances and total instances. Each subcircuit has an
associated checksum, so that changes to the subcircuit are
flagged to ensure re-evaluation. Here is a sample line from the
GUI.

GATE INFO: SUBCKT (MON)/Mp1(PCH) error count 1/6 checksum(380633301 942)

Error details – the device terminal connections and full
hierarchy – are available in a popup window. There are 4 error
levels: ‘ERROR’ – must be fixed before signoff, “Warning” –
problem circuit approved by the circuit designer, “Check” –
possible problem that requires circuit designer check, “ignore”
– false errors. Each error is assigned a reference along with an
error level. This reference may refer to a bookmark of the
associated circuit and may contain an error code. For example,
‘A001LS’ could mean that the circuit can be viewed at
bookmark A001 and the error is related to level-shifters.
Analysis results are stored in a separate summary file. The GUI
shows errors in one of 6 states: checked – ERROR, Warning,
Check, or ignore, unchecked – only in error file, unconfirmed –
checksum has changed, uncommitted – copied from other mode,
unmatched – only in summary file, comment – errors from
previous versions that have been fixed. The GUI is capable of
displaying the results of multiple verification modes to allow
simultaneous analysis. When analysis is complete, the results
may be exported to a CSV file for confirmation by the design
team.

REFERENCES

[1] https://www.mentor.com/products/fv/multimedia/overview/overview-of-
calibre-perc-18d4001a-c1ac-4af0-81c2-1895642f0606

[2] https://www.synopsys.com/verification/ams-verification/reliability-
analysis/customsim-circuit-check.html

[3] https://en.wikipedia.org/wiki/Obstack

https://www.mentor.com/products/fv/multimedia/overview/overview-of-calibre-perc-18d4001a-c1ac-4af0-81c2-1895642f0606
https://www.mentor.com/products/fv/multimedia/overview/overview-of-calibre-perc-18d4001a-c1ac-4af0-81c2-1895642f0606
https://www.synopsys.com/verification/ams-verification/reliability-analysis/customsim-circuit-check.html
https://www.synopsys.com/verification/ams-verification/reliability-analysis/customsim-circuit-check.html
https://en.wikipedia.org/wiki/Obstack

