
An Open Source Alternative to Wire Bonding
1st Pascal Sossou

Science, Math, and Computer Science Magnet House
Poolesville High School

Poolesville, U.S.A.
pascalsossou1@gmail.com

2nd Timothy Edwards
SVP of Analog and Platform

Open Circuit Design, efabless.com
San Jose, U.S.A

tim@opencircuitdesign.com

Abstract—Before the end of the millennium, the infrastructure
concerned with circuit chip design and development was widely
accessible and affordable to many people involved; the relevant
software was free and, and chips were cheap to manufacture.
However, through the rapid development of electronics in the
past twenty years, a vast majority of software and design tools
became proprietary. The license costs for these became pro-
hibitively expensive for all except large companies and research
institutions, thus confining the chip design industry within the
borders of privatized interests. Consequently, many university
research programs, small companies, and individuals concerned
with chip design have no choice but to work with obsolete
technologies and methods. This paper discusses a recent initiative
to ’democratize’ the chip design industry through software
automation. Specifically, we overview a desktop application that
automates wire bonding chips to their respective packages, detail
its functionality, and discuss the supporting infrastructure from
which the application derives its resources from. We will also
discuss any relevant and existing open source tools and the
shortcomings of the application.

Index Terms—pads, pins, paddle, QFN packages,

I. INTRODUCTION

Integrated circuits (IC’s) are sets of electronic circuits
placed on semiconductor materials (usually silicon). The in-
tegration of a large number of transistors in a small space
creates circuits that are faster, cheaper, and more portable than
circuits made of discrete electrical components. Traditionally,
IC technicians place chips inside packages, and form physical
connections between the two through wire bonding, however,
large companies employ machines to complete these steps
automatically. This allows for their digital communications
to occur. However, the process can become extremely com-
plicated and tedious, as without software tools, all planning
must be done by hand, often in a ’trial and error’ approach.

II. GENERATING DIAGRAMS

A. QFN Package Layout

The primary objective of the application was to create dia-
grams for quad flat no-lead (QFN) packages - bidirectionally
symmetric packages with a constant number of pins for each
of its four sides. Given the number of chip pads, as derived
from analysis of a chip’s LEF file, the program determines
how many pins are required, and then generates an image of
a corresponding QFN (Fig. 1). There is a challenge however;
some chips have irregular pad designs which introduces com-
plications with wire placement.

Fig. 1. An example QFN package for the hydra chip

Fig. 2. Initial wire bond solution

B. Wire bonding Algorithm

For chips with simpler and symmetric pads, developing an
algorithm is trivial. However, for more unique arrangements,
a rudimentary approach fails, and we must adopt a clever
method to arrive at a possible solution. The algorithm begins
the wire bonding process by iterating the pads of one side
of a chip in a center-out strategy. Suppose the list 1,2,3,4,5
represents five pads amongst a particular side of a chip. The



algorithm iterates the list in the order 3,4,2,5,1, where each pad
is connected to the closest available pin that has not already
been wire bonded. However, we are not done, as with some
pad arrangements, we that there exists many crossovers, as
observed in Fig. 2. To fix this, we can iterate a list containing
all the line objects, and recursively check to see if they
intersect with any other lines (before and after swapping), as
we elaborate below (Algorithm 1). Employing this strategy,
the application arrives at a more presentable solution (Fig. 3)

Algorithm 1 Rectify Crossovers
Require: No two wires intersect

for w1 ∈ wires do
for w2 ∈ wires ∧ w2 6= w1 do

if ¬(w1 intersects w2) then
continue

end if
else

swap w1, w1

Algorithm1()
end for
return

end for

Fig. 3. Final wire bond solution

TABLE I
ALGORITHMIC ACCURACY OF LEGITIMATE WIRE PLACEMENTS

Chip Name Number of Pads Percentage of Correct Wire Bond Placements
frequency divid 12 1.0
hydra 31 .84
strIve 42 .90
strIve2 42 .90
raven 42 .90
ravenna 47 .92
openramtc1kb 52 .85

C. Editing Tools

After the initial diagram has been generated by the appli-
cation, the user has a variety of options regarding editing and
saving the image produced. The user can drag, shift, and delete

any wire, as needed, and also increase the number of pins in
the package. Additionally, the user can save the image in the
form of various file types including png, jpg, and pdf. The
application also checks every individual wire, and colors them
red if they are placed in an illegitimate position [2], so that
the user may identify and rectify wires as necessary.

D. Algorithmic Efficacy
The construction an algorithm that places wires with a

one-hundred-percent accuracy is difficult. There are too many
discrepancies and variations, regarding chip dimensions and
pad placements, to efficiently account for every single possi-
bility. This may or may not be a problem, as the wire bonder
only needs to make minimal adjustments to create a valid
diagram. The script most likely can be optimized, but its time
complexity also shouldn’t be a major concern as the number
of wires the application handles is relatively small in size as
compared to a setting in which the time required to compute a
solution is impractical. Table 1 quantifies the reliability of the
algorithm to determine the majority of wire bond placements.

III. SUPPORTING INFRASTRUCTURE

A. Potential Open Source Databases
Google has partnered with Skywater Technology in the

recent Open Source Shuttle Program initiative, with plans to
launch the FOSS 120nm Production PDK as soon as Novem-
ber, 2020, the implications of which would allow anyone to
create and monetize their own chips.

B. Application Resources
The wire bond application depends primarily on formats

produced by the Magic VSLI Layout tool, but could theoret-
ically come from any other tool capable of producing a LEF
abstract view of a chip top-level and, although not necessary,
a graphical image for a visual reference point for the user.

IV. CONCLUSION

Historically, wire bonding software has remained propri-
etary [4], and since any information regarding current wire
bonding technologies is not available in the public domain,
it is difficult to compare the application with any other.
Nevertheless, the wire bonding algorithm incontrovertibly out-
performs hand-drawn diagrams - shedding hours of time for
IC packaging technicians.

REFERENCES

[1] Air Cavity QFN Packages. (n.d.). Retrieved August 30, 2020, from
http://www.icproto.com/cap-ic-open-cavity-qfn.html

[2] General Rules for Bonding and Packaging [Manual]. (n.d.).
https://d1rkab7tlqy5f1.cloudfront.net/EWI/Onderzoek/Else

[3] An Introduction to Tkiner. (n.d.). Retrieved August 30, 2020, from
https://effbot.org/tkinterbook/

[4] New Technologies and New Applications for Wire
Bonding. (n.d.). Retrieved September 3, 2020, from
https://www.researchgate.net/publication/319847493 New Technologies
and New Applications for Wire Bonding

[5] Packaging Options. (n.d.). The Mosis Service. Retrieved August 30,
2020, from https://www.mosis.com/pages/products/assembly/index

[6] Simlink HFSS. (n.d.). Retrieved August 30, 2020, from http://www.cad-
design.com/software/3rdpartysimulationlinkshfss.html

[7] Repository: https://github.com/letter108/Wirebonding


