
A PostScript Toolkit for Electronic Design
Sarp Özdemir

Computer Science
SUNY Binghamton
Binghamton, NY

sozdemi2@binghamton.edu

Jennifer Seibert
Computer Science
SUNY Binghamton
Binghamton, NY

jseiber1@binghamton.edu

Mohammad A. Khasawneh
Computer Science

SUNY Binghamton/MathWorks
Binghamton, NY

mkhasaw1@binghamton.edu

Patrick H. Madden
Computer Science
SUNY Binghamton
Binghamton, NY

pmadden@binghamton.edu

Abstract—Design automation tools operate on large problems,
and often take hours or days to complete a run. Visualizing
design data effectively can help track bugs, highlight optimization
opportunies, and give a deeper understanding of the impact of
subtle algorithmic changes. In this paper, we present a small,
lightweight, cross-platform C language interface to the PostScript
language, designed for software developers who primarily work
in C or C++. Versions of this library have been a key resource
for our research group in development of a number of design
automation tools. The library is available in open source at
https://github.com/profmadden/pstools.

Index Terms—electronic design, postscript, graphic display,
open source

I. INTRODUCTION

For decades, the size and complexity of electronics have in-
creased; Moore’s law continues at it’s breakneck pace. To keep
up, design automation tools have had to evolve continually.

Often, good visualization of a design can reveal implemen-
tation errors in a tool, or make an optimization opportunity
readily apparent. User interfaces to many design tools utilize
bitmapped high resolution graphic displays - but these can
suffer from complex APIs, and can have limited portability
across operating systems and development environments. A
less freqently used alternative is direct generation of PostScript
language figures; this has been a staple in tool development
for our research group, but is not widely used. In this paper,
we present our approach, and provide an open source set of
tools to enable easy use.

II. THE POSTSCRIPT LANGUAGE

PostScript [1] has become a de facto standard for rendering
text and figures; it underlies PDF files, many high resolution
printers support it natively, and there are optimized rendering
applications for nearly any computer system. Many modern
text and graphics editing programs support PostScript directly,
enabling the embedding of figures into other documents easily.

The versatility of PostScript comes from it being an expres-
sive interpreted programming language, rather than a specific
file format. The PostScript programming model supports a
flexible coordinate system, primative operators for drawing
lines and curves, and an abundance of operators to handle
text and different fonts. Bitmapped shapes and textures are
also supported. Using these primatives, along with an efficient
stack based approach, nearly any image that could be imagined
can be translated into PostScript. The language itself is human

readable, although it is uncommon to write programs “by
hand.” In practice, PostScript “programs” are created by other
programs, and then rendered by a PostScript interpreter to the
screen, or to a printer.

Figure 1 shows a boilerplate header for a PostScript pro-
gram; this must be formatted correctly for a PostScript inter-
preter to process a file correctly. While neither complex or
cryptic, needing to recall or look up the formatting of this
material can be a burden for a software developer focused
on another complex task (and working primarily in another
programming language). In large part, the library we have de-
veloped is to minimize the nuisance of generating PostScript.

%!PS-Adobe-3.0 EPSF-3.0
%%DocumentData: Clean7Bit
%%Origin: 0.00 0.00
%%BoundingBox: 0.00 0.00 1000.00 1000.00
%%LanguageLevel: 2
%%Pages: 1
%%Page: 1 1

Fig. 1. The header portion of a PostScript program.

The drawing primatives with PostScript are relatively sim-
ple, but unless a software developer is actively working with
the language, generating code might require frequent trips to
the language manual. In Figure 2, we show the creation of
a line and a circle in PostScript (with the percent symbol
marking a comment line). The language operates off a stack;
coordinates for the operations are pushed onto the stack first,
and then commands such as moveto and arc use the stack
elements to generate the graphic output.

% Create a line from 3, 4 to 25, 37
newpath 3 4 moveto 25 37 lineto stroke

% Create a filled circle with a
% center at 55, 66, radius of 20
55 66 20 0 360 arc closepath fill

Fig. 2. PostScript commands to create a line and a circle.

The language itself is not difficult, particularly if the images
to be created are relatively straight-forward lines, arcs, and
text.

III. POSTSCRIPT IN DESIGN AUTOMATION TOOLS

To illustrate how our research group has used PostScript
generation over the years, we include a few figures from
published papers. In Figure 3, we show the standard cell
legalization step of our fractional cut placement tool Feng Shui
[3]. Individual cell positions are illustrated, along with red
highlighting lines tracking movement from abstract to legal
placement. This sort of illustration was helpful in identifying
errors and shortcomings in our first placement legalization
efforts. Creation of figures such as this required only a half
page of C code. The routines to generate the images were
created during the development of the placement tool, while
the underlying data structures were fresh in mind.

Fig. 3. An illustration of cell movement in the fractional cut recursive
bisection placement tool Feng Shui. Short red lines indicate small shifts
required for legalization.

As a second example, Figure 4 shows global routing
congestion maps from our Chi router [4], across different
iterations of the tool, and using different cost functions to
guide optimization. A complete run of a suite of benchmarks
could take many hours; generation of PostScript snapshots
during each run enabled our group to easily see what occured
on any given run, and also to track the impact of code changes
across months of development.

IBM07 through multiple iterations of rip-up and reroute
Linsker Linsker with Congestion Prediction

Iteration 0

Overflow 3665

Iteration 1

Overflow 619

Iteration 8

Overflow 251

Iteration 0

Overflow 2803

Iteration 1

Overflow 728

Iteration 8

Overflow 422

Fig. 4. Congestion maps from the Chi [4]. Multiple PostScript files were as-
sembled using a commercial graphics editing package to create the illustration
used in the research paper.

Figures 3 and 4 were published in 2003, and we have
continued the use of PostScript. In Figure 5, we show illus-
trations from a detail placement paper published in 2020 [5].
Our focus in this work is on reducing interconnect length,
and accomplishing this often required moving dozens of
standard cells in synchrony – with the potential solution space
being astronomically large. Good visualization was essential

to finding and tracking implementation errors, and in spotting
potential improvements.

a10073

a1008

a10086

a10115

a10176

a10206

a10292

a1

a1040

a10545

a10565

a10593

a1063

a10

a10929

a11078

a11110

a11158

a11220

a11234

a11271

278 a11407

a11417

a11440

a11526

a1154

a1166

a11668

a11739

a11818

a11986a12060

a1218

a12212

a12251

a12355 a12477

a1433

a1554

a1572

a1640

a1700

a1758

a1771

a1850

a1898

a2039

a2064

a2321 a2332a2589

a2599

a2606

a2636

a2668

a2716

a2747

a2931

a3036

a3162

a3178

a3323

a339335

a349

a3498

a3

a3608

a3686

a3696

a3714

a3864a3878

a3967

a4021

a4060

a4108

a4164

a4299

a4353

a4369a4379

a440

a4450

a4453

a4477

a4615

a4692

a4913

a4972

a50

a502

a5037

a5069

a5092

a5140 a5228

a5377

a5406

a5454

a5470

a5545

a556a5680

a5681

a5711

a5726

a5730

a5765

a5899

a6123

a6232

a6401

a6487

a6523

a6643

a6657

a6705

a674

a6797

6821

a6833a6842

a6897

a7

a7158

a7271

a731

a758

a7771

a7813

a783

a7865

a7932

a8106

a8210

a827

a8284 a8

a8338

a8421

a8550

a864

a8748

a89

a8974

a9246

a9320

a9396

a9475 a9571

a9

a971

a10073

a1008

a10086

a10115

a10176

a10206

a10292

a1

a1040

a10545

a10565

a10593

a1063

a10

a10929

a11078

a11110

a11158

a11220

a11234

a11271

278 a11407

a11417

a11440

a11526

a1154

a1166

a11668

a11739

a11818

a11986a12060

a1218

a12212

a12251

a12355 a12477

a1433

a1554

a1572

a1640

a1700

a1758

a1771

a1850

a1898

a2039

a2064

a2321 a2332a2589

a2599

a2606

a2636

a2668

a2716

a2747

a2931

a3036

a3162

a3178

a3323

a339335

a349

a3498

a3

a3608

a3686

a3696

a3714

a3864a3878

a3967

a4021

a4060

a4108

a4164

a4299

a4353

a4369a4379

a440

a4450

a4453

a4477

a4615

a4692

a4913

a4972

a50

a502

a5037

a5069

a5092

a5140a5228

a5377

a5406

a5454

a5470

a5545

a556a5680

a5681

a5711

a5726

a5730

a5765

a5899

a6123

a6232

a6401

a6487

a6523

a6643

a6657

a6705

a674

a6797

6821

a6833a6842

a6897

a7

a7158

a7271

a731

a758

a7771

a7813

a783

a7865

a7932

a8106

a8210

a827

a8284 a8

a8338

a8421

a8550

a864

a8748

a89

a8974

a9246

a9320

a9396

a9475 a9571

a9

a971

(a) Initial Placement (b) Modified Placement
 -2.0
P:3

 0.0
P:0

 30.0
P:1

 30.0
P:2

 45.0
P:4

-18.0
P:3

-10.0
P:3

 -4.0
P:0

 -4.0
P:2

 0.0
P:0

 4.0
P:2

 10.0
P:1

 12.0
P:3

 13.0
P:1

 18.0
P:0

 22.0
P:2

 25.0
P:1

 29.0
P:3

 30.0
P:3

 40.0
P:0

 41.0
P:0

-14.0
P:2

-14.0
P:0

 -7.0
P:2

 -7.0
P:0

 0.0
P:2

 0.0
P:0

 0.0
P:0

 0.0
P:2

 0.0
P:2

 0.0
P:0

 4.0
P:2

 4.0
P:0

 6.0
P:4

 11.0
P:1

 13.0
P:4

 16.0
P:0

-17.0
P:3

-16.0
P:0

-14.0
P:0

-13.0
P:3

-10.0
P:3

 -9.0
P:0

 -7.0
P:0

 -6.0
P:3

 -6.0
P:0

 -3.0
P:3

 -1.0
P:2

 -1.0
P:3

 -1.0
P:3

 0.0
P:0

 0.0
P:0

 1.0
P:3

-37.0
P:3

-33.0
P:3

-30.0
P:3

-30.0
P:3

-28.0
P:3

-26.0
P:3

-23.0
P:0

-23.0
P:3

-23.0
P:3

-21.0
P:3

-21.0
P:3

-21.0
P:3

-20.0
P:3

-19.0
P:0

-19.0
P:3

-16.0
P:0

-37.0
P:1

-37.0
P:4

-37.0
P:0

-33.0
P:0

-33.0
P:1

-33.0
P:4

-30.0
P:0

-30.0
P:4

-30.0
P:1

-30.0
P:0

-30.0
P:4

-30.0
P:1

-28.0
P:1

-28.0
P:0

-28.0
P:4

-26.0
P:0

-37.0
P:0

-37.0
P:0

-34.0
P:2

-33.0
P:0

-33.0
P:0

-30.0
P:2

-30.0
P:0

-30.0
P:0

-30.0
P:0

-30.0
P:0

-28.0
P:0

-28.0
P:0

-27.0
P:3

-27.0
P:2

-27.0
P:2

-26.0
P:0

-57.0
P:3

-53.0
P:3

-50.0
P:3

-50.0
P:3

-45.0
P:2

-45.0
P:2

-44.0
P:0

-43.0
P:3

-43.0
P:3

-41.0
P:2

-41.0
P:2

-40.0
P:0

-39.0
P:3

-39.0
P:3

-38.0
P:2

-38.0
P:2

-56.0
P:2

-52.0
P:2

-50.0
P:2

-50.0
P:2

-49.0
P:2

-49.0
P:2

-46.0
P:2

-46.0
P:2

-44.0
P:0

-44.0
P:0

-44.0
P:0

-43.0
P:2

-40.0
P:0

-40.0
P:0

-40.0
P:0

-39.0
P:2

-70.0
P:4

-66.0
P:4

-64.0
P:4

-64.0
P:4

-63.0
P:4

-63.0
P:4

-60.0
P:4

-60.0
P:4

-58.0
P:4

-58.0
P:4

-58.0
P:4

-57.0
P:4

-56.0
P:0

-54.0
P:4

-54.0
P:4

-54.0
P:4

-73.0
P:4

-52.0
P:0

-49.0
P:0

-49.0
P:0

-45.0
P:4

-45.0
P:4

-45.0
P:4

-45.0
P:0

-45.0
P:0

-44.0
P:0

-44.0
P:0

-44.0
P:0

-43.0
P:0

-41.0
P:4

-41.0
P:4

-41.0
P:4

-73.0
P:0

-54.0
P:1

-52.0
P:0

-49.0
P:0

-45.0
P:0

-45.0
P:0

-45.0
P:0

-44.0
P:0

-44.0
P:0

-43.0
P:0

-41.0
P:0

-41.0
P:0

-41.0
P:0

-37.0
P:0

-37.0
P:0

-36.0
P:0

Fig. 5. Our large-window detail placement approach groups standard cells
together for permutation; the grouping (and restrictions on permutations)
enables large problems to be solved to near-optimality. Cell movement is
shown by generating “before” and “after” snapshots, while the tree shows a
key internal data structure.

IV. THE PSTOOLS INTERFACE

To insulate research group members primarily working in C
and C++, we have developed the pstools library; key routines
are shown in Figure 6. The library is neither large nor complex;
our objective is simply to “get the job done” without expending
a vast amount of software development effort.

ps_context *ps_init(char *filename,
 float origin_x, float origin_w,
 float width, float height);

int ps_line(ps_context *context,
 float x1, float y1, float x2, float y2);

int ps_circle(ps_context *context,
 float cx, float cy, float radius,
 int stroke, int fill);

int ps_finish(ps_context *context);

int ps_text(ps_context *context,
 float x, float y, char *text);

int ps_note(ps_context *context, char *note);

Fig. 6. The programming interface to the ps tools library. ps init opens a
file for writing, while ps finish closes it. Commands to create lines, circles,
and so on, are straight forward.

The function ps init opens a file under the supplied name,
and generates the boilerplate PostScript header. The ps context
structure wraps the file handle, and some additional informa-
tion about the size of the drawing area. When ps finish is
called, the file is closed, and allocated memory is released.

Using the library, it’s a simple matter to integrate PostScript
output into an application program. In practice, we develop
routines that produce images of interest – a placement, or rout-
ing, for example – and then add calls to this routine at various
points throughout the entire automation tool flow. Generation

0.0
0.0

40.0

30.0

0.0
0.0

40.0

30.0
cat

dog
rabbit

turtle

sheep

x_label

y_label

0.000 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.0
0.000

5.000

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

x_label

y_label

0.000 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.0
20.0000

23.5599

27.1199

30.6800

34.2399

37.7999

41.3600

44.9199

48.4800

52.0400

55.5999

x_label

y_label

0.000 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.0
-20.000

-6.0000

8.00000

22.0000

36.0000

50.0000

64.0000

78.0000

92.0000

106.000

120.000

single camera perspective isometric perspective

+

gnd

load

Fig. 7. Example figures included with the pstools library. Using the primatives, and also interspersing custom PostScript commands, a wide range of figures
can be created easily.

of PostScript files are toggled on and off with debugging flags,
or can be enabled and disabled at run-time. We use a simple
naming convention in most cases – benchmark name, followed
by the date that the file is generated.

An extremely helpful feature of the PostScript language is
the insertion of comments (which are lines beginning with
a percent symbol). The ps note routine inserts text as a
comment into a PostScript file; we normally record the run
parameters used, git commit information, and so on, so that
all aspects of a run that created a particular image can be
replicated at a later date.

Additionally, design information that may be more detailed
than one might wish for a graphic display can be embedded –
for example, the length of individual interconnect nets might
be recorded, with the software developer being able to see the
layout in Adobe Acrobat, while simultaneously looking at the
notes in the generated PostScript file with a simple text editor.

V. PSTOOLS EXAMPLES

The pstools library contains a number of simple exam-
ples, which can be compiled and run using make. The
raw PostScript can be converted into PDF format using an
application such as GhostScript.

The example output, shown in Figure 7 include a simple
plot, pie charts, bar charts, and a preliminary set of routines
to draw standard electronic symbols.

As part of our current work, we are focused on combi-
natorial optimization problems – two of the figures show
solution spaces for binary variables. In these, we combine
the primatives in the pstools library with direct generation of
PostScript language, to support curved lines between vertices
of a graph.

There is even a simple three dimensional drawing toolkit un-
der development; a set of commands creates three-dimensional

rectangular areas, which are queued and then rendered back-
to-front. The eventual goal of this portion of our work is to
allow simple rendering of transistor-level layouts, including
detail routing.

VI. CONCLUSION AND FUTURE WORK

The PostScript language is an excellent platform for creating
graphic images, and it meshes well with the needs of design
automation tools. Much of the work done by design tools is
not interactive in nature – capturing snapshots from hours-long
runs is extremely convenient.

Because the library uses only standard C output routines,
it is exceptionally portable. The figures produced are vector-
based, making them compact, and also scalable – ideal for
embedding into research publications. Images can be zoomed
electronically, and do not degrade the way bit-mapped images
do (an excellent example of this is with Figure 5). We
have used PostScript for decades, and we plan to continue
work on the library, adding additional features, and futher
documentation.

REFERENCES

[1] Adobe Systems Incorporated, “PostScript Language Reference,” (online)
https://www.adobe.com/content/dam/acom/en/devnet/actionscript/articles/PLRM.pdf

[2] Binghamton Optimality Research Group, “pstools library,” (online)
https://github.com/profmadden/pstools

[3] A. R. Agnihotri, M. C. Yildiz, A. Khatkhate, A. Mathur, S. Ono, and P.
H. Madden, “Fractional Cut: Improved Recursive Bisection Placement,”
proc. International Conference on Computer Aided Design (ICCAD),
pp. 307–310, 2003.

[4] R. T. Hadsell and P. H. Madden, “Improved Global Routing through
Congestion Estimation,” proc. Design Automation Conference (DAC),
pp. 28–31, 2003.

[5] M. A. Khasawneh and P. H. Madden, “Hill Climbing With Trees:
Detail Placement for Large Windows,” proc. Internationa Symposium
on Physical Design (ISPD), 2020.

