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Abstract—Design automation tools operate on large problems,
and often take hours or days to complete a run. Visualizing
design data effectively can help track bugs, highlight optimization
opportunies, and give a deeper understanding of the impact of
subtle algorithmic changes. In this paper, we present a small,
lightweight, cross-platform C language interface to the PostScript
language, designed for software developers who primarily work
in C or C++. Versions of this library have been a key resource
for our research group in development of a number of design
automation tools. The library is available in open source at
https://github.com/profmadden/pstools.

Index Terms—electronic design, postscript, graphic display,
open source

I. INTRODUCTION

For decades, the size and complexity of electronics have in-
creased; Moore’s law continues at it’s breakneck pace. To keep
up, design automation tools have had to evolve continually.

Often, good visualization of a design can reveal implemen-
tation errors in a tool, or make an optimization opportunity
readily apparent. User interfaces to many design tools utilize
bitmapped high resolution graphic displays - but these can
suffer from complex APIs, and can have limited portability
across operating systems and development environments. A
less freqently used alternative is direct generation of PostScript
language figures; this has been a staple in tool development
for our research group, but is not widely used. In this paper,
we present our approach, and provide an open source set of
tools to enable easy use.

II. THE POSTSCRIPT LANGUAGE

PostScript [1] has become a de facto standard for rendering
text and figures; it underlies PDF files, many high resolution
printers support it natively, and there are optimized rendering
applications for nearly any computer system. Many modern
text and graphics editing programs support PostScript directly,
enabling the embedding of figures into other documents easily.

The versatility of PostScript comes from it being an expres-
sive interpreted programming language, rather than a specific
file format. The PostScript programming model supports a
flexible coordinate system, primative operators for drawing
lines and curves, and an abundance of operators to handle
text and different fonts. Bitmapped shapes and textures are
also supported. Using these primatives, along with an efficient
stack based approach, nearly any image that could be imagined
can be translated into PostScript. The language itself is human

readable, although it is uncommon to write programs “by
hand.” In practice, PostScript “programs” are created by other
programs, and then rendered by a PostScript interpreter to the
screen, or to a printer.

Figure 1 shows a boilerplate header for a PostScript pro-
gram; this must be formatted correctly for a PostScript inter-
preter to process a file correctly. While neither complex or
cryptic, needing to recall or look up the formatting of this
material can be a burden for a software developer focused
on another complex task (and working primarily in another
programming language). In large part, the library we have de-
veloped is to minimize the nuisance of generating PostScript.

%!PS-Adobe-3.0 EPSF-3.0
%%DocumentData: Clean7Bit
%%Origin:       0.00       0.00
%%BoundingBox:       0.00       0.00    1000.00    1000.00
%%LanguageLevel: 2
%%Pages: 1
%%Page: 1 1        

Fig. 1. The header portion of a PostScript program.

The drawing primatives with PostScript are relatively sim-
ple, but unless a software developer is actively working with
the language, generating code might require frequent trips to
the language manual. In Figure 2, we show the creation of
a line and a circle in PostScript (with the percent symbol
marking a comment line). The language operates off a stack;
coordinates for the operations are pushed onto the stack first,
and then commands such as moveto and arc use the stack
elements to generate the graphic output.

% Create a line from 3, 4 to 25, 37
newpath 3 4 moveto 25 37 lineto stroke

% Create a filled circle with a
% center at 55, 66, radius of 20
55 66 20 0 360 arc closepath fill

Fig. 2. PostScript commands to create a line and a circle.

The language itself is not difficult, particularly if the images
to be created are relatively straight-forward lines, arcs, and
text.



III. POSTSCRIPT IN DESIGN AUTOMATION TOOLS

To illustrate how our research group has used PostScript
generation over the years, we include a few figures from
published papers. In Figure 3, we show the standard cell
legalization step of our fractional cut placement tool Feng Shui
[3]. Individual cell positions are illustrated, along with red
highlighting lines tracking movement from abstract to legal
placement. This sort of illustration was helpful in identifying
errors and shortcomings in our first placement legalization
efforts. Creation of figures such as this required only a half
page of C code. The routines to generate the images were
created during the development of the placement tool, while
the underlying data structures were fresh in mind.

Fig. 3. An illustration of cell movement in the fractional cut recursive
bisection placement tool Feng Shui. Short red lines indicate small shifts
required for legalization.

As a second example, Figure 4 shows global routing
congestion maps from our Chi router [4], across different
iterations of the tool, and using different cost functions to
guide optimization. A complete run of a suite of benchmarks
could take many hours; generation of PostScript snapshots
during each run enabled our group to easily see what occured
on any given run, and also to track the impact of code changes
across months of development.

IBM07 through multiple iterations of rip-up and reroute
Linsker Linsker with Congestion Prediction

Iteration 0

Overflow 3665

Iteration 1

Overflow 619

Iteration 8

Overflow 251

Iteration 0

Overflow 2803

Iteration 1

Overflow 728

Iteration 8

Overflow 422

Fig. 4. Congestion maps from the Chi [4]. Multiple PostScript files were as-
sembled using a commercial graphics editing package to create the illustration
used in the research paper.

Figures 3 and 4 were published in 2003, and we have
continued the use of PostScript. In Figure 5, we show illus-
trations from a detail placement paper published in 2020 [5].
Our focus in this work is on reducing interconnect length,
and accomplishing this often required moving dozens of
standard cells in synchrony – with the potential solution space
being astronomically large. Good visualization was essential

to finding and tracking implementation errors, and in spotting
potential improvements.
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(a) Initial Placement (b) Modified Placement
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Fig. 5. Our large-window detail placement approach groups standard cells
together for permutation; the grouping (and restrictions on permutations)
enables large problems to be solved to near-optimality. Cell movement is
shown by generating “before” and “after” snapshots, while the tree shows a
key internal data structure.

IV. THE PSTOOLS INTERFACE

To insulate research group members primarily working in C
and C++, we have developed the pstools library; key routines
are shown in Figure 6. The library is neither large nor complex;
our objective is simply to “get the job done” without expending
a vast amount of software development effort.

ps_context *ps_init(char *filename,
                    float origin_x, float origin_w,
                    float width, float height);

int ps_line(ps_context *context,
            float x1, float y1, float x2, float y2);

int ps_circle(ps_context *context,
              float cx, float cy, float radius,
              int stroke, int fill);

int ps_finish(ps_context *context);

int ps_text(ps_context *context,
            float x, float y, char *text);

int ps_note(ps_context *context, char *note);

Fig. 6. The programming interface to the ps tools library. ps init opens a
file for writing, while ps finish closes it. Commands to create lines, circles,
and so on, are straight forward.

The function ps init opens a file under the supplied name,
and generates the boilerplate PostScript header. The ps context
structure wraps the file handle, and some additional informa-
tion about the size of the drawing area. When ps finish is
called, the file is closed, and allocated memory is released.

Using the library, it’s a simple matter to integrate PostScript
output into an application program. In practice, we develop
routines that produce images of interest – a placement, or rout-
ing, for example – and then add calls to this routine at various
points throughout the entire automation tool flow. Generation
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Fig. 7. Example figures included with the pstools library. Using the primatives, and also interspersing custom PostScript commands, a wide range of figures
can be created easily.

of PostScript files are toggled on and off with debugging flags,
or can be enabled and disabled at run-time. We use a simple
naming convention in most cases – benchmark name, followed
by the date that the file is generated.

An extremely helpful feature of the PostScript language is
the insertion of comments (which are lines beginning with
a percent symbol). The ps note routine inserts text as a
comment into a PostScript file; we normally record the run
parameters used, git commit information, and so on, so that
all aspects of a run that created a particular image can be
replicated at a later date.

Additionally, design information that may be more detailed
than one might wish for a graphic display can be embedded –
for example, the length of individual interconnect nets might
be recorded, with the software developer being able to see the
layout in Adobe Acrobat, while simultaneously looking at the
notes in the generated PostScript file with a simple text editor.

V. PSTOOLS EXAMPLES

The pstools library contains a number of simple exam-
ples, which can be compiled and run using make. The
raw PostScript can be converted into PDF format using an
application such as GhostScript.

The example output, shown in Figure 7 include a simple
plot, pie charts, bar charts, and a preliminary set of routines
to draw standard electronic symbols.

As part of our current work, we are focused on combi-
natorial optimization problems – two of the figures show
solution spaces for binary variables. In these, we combine
the primatives in the pstools library with direct generation of
PostScript language, to support curved lines between vertices
of a graph.

There is even a simple three dimensional drawing toolkit un-
der development; a set of commands creates three-dimensional

rectangular areas, which are queued and then rendered back-
to-front. The eventual goal of this portion of our work is to
allow simple rendering of transistor-level layouts, including
detail routing.

VI. CONCLUSION AND FUTURE WORK

The PostScript language is an excellent platform for creating
graphic images, and it meshes well with the needs of design
automation tools. Much of the work done by design tools is
not interactive in nature – capturing snapshots from hours-long
runs is extremely convenient.

Because the library uses only standard C output routines,
it is exceptionally portable. The figures produced are vector-
based, making them compact, and also scalable – ideal for
embedding into research publications. Images can be zoomed
electronically, and do not degrade the way bit-mapped images
do (an excellent example of this is with Figure 5). We
have used PostScript for decades, and we plan to continue
work on the library, adding additional features, and futher
documentation.
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