
OpenPhySyn: An Open-Source Physical Synthesis
Optimization Toolkit

Ahmed Agiza
Computer Science Department

Brown University
Providence, RI, 02912

Sherief Reda
School of Engineering

Brown University
Providence, RI, 02912

Abstract—Physical synthesis is a crucial phase in modern
EDA due to the challenges in achieving timing closure. Many
approaches have been presented to solve different timing and
electrical violations, such as buffer insertion, gate sizing, pin
swapping, gate cloning, and logic transformations; each approach
has different overhead costs in terms of area, power, and run-
time. This paper describes OpenPhySyn, a new open-source EDA
kit that implements and enhances various physical synthesis and
logical design algorithms to resolve design violations and perform
timing closure. The tool integrates seamlessly with standard
EDA flows and tackles different types of violations with minimal
human interference and reduced area overhead. We evaluate
OpenPhySyn on different industrial designs showing around 78%
reduction in the area overhead when compared against existing
open-source optimization flow while providing better solution
quality.

Index Terms—physical synthesis, optimization, buffering, re-
sizing

I. INTRODUCTION

Solving electrical and timing violations is a challenging
problem in modern digital design. The problem complexity
increases significantly with the shrinkage of technology nodes
and the increase of interconnect delay [1] [2] [3]. Common
approaches for solving design violations include buffer inser-
tion, gate sizing, and pin swapping. Additionally, resolving the
design violations entitles a significant increase in the design
area and power due to the added or upsized cells.

Several approaches have been well-studied to find optimal
buffer trees, such as the classical van Ginneken dynamic
buffering approach [4] that uses a dynamic programming
approach to find the optimal buffer tree for a given pin.
Karandikar et al. explain a gate resizing approach to solve
different types of electric violations [5]. Additionally, other
techniques have been proposed to optimize the performance
of the classical algorithms, such as the approach by Shi et
al. that decreases the run-time of the van Ginneken buffering
significantly [6].

OpenPhySyn 1 is an open-source toolkit that performs vari-
ous physical and logic synthesis optimizations to solve design
violations while minimizing the area overhead as a secondary
objective. OpenPhySyn implements various optimization algo-
rithms with novel enhancements to improve the design quality.
OpenPhySyn utilizes modern open-source packages such as

1https://github.com/scale-lab/OpenPhySyn

OpenSTA [7] for incremental timing analysis and OpenDB [8]
for managing the loaded design. The tool also reads and writes
using standard LEF/DEF format, facilitating the integration
with different EDA flows. Moreover, OpenPhySyn is based on
a flexible infrastructure that facilitates the implementation and
integration of any optimization algorithm through a dynamic
modular architecture, while providing a comprehensive utility
library to speed up the development process and direct the
developer’s effort to the core logic of the optimization.

In this work, our contributions are summarized as follows:
• We describe OpenPhySyn, a novel physical synthesis

optimzation tool. Our tool solves different design timing
and electrical violation with minimal area overhead.

• We present an overview of the tool’s main optimiza-
tion commands, the tool exports various optimization
commands that solve design violations with different
techniques.

• We present the tool’s optimization flows; the tool is able
to composes multiple optimization techniques to solve
design timing and electrical violations efficiently.

• We evaluate our tool against different EDA bench-
marks and show the optimization results while comparing
against the existing OpenROAD flow [9].

The rest of this paper is organized as follows. Section II
presents the tool flow, Section III shows the experimental
evaluation, and we conclude in Section IV.

II. OPENPHYSYN OVERVIEW

A. OpenPhySyn Architecture

As shown in Fig 1, OpenPhySyn utilizes a modular archi-
tecture to facilitate extensibility and development. The main
components of our tool are as follows:

• Tcl interface: the tool provides a scriptable Tcl interface
for the end-user conforming to the EDA tools standards.
The interface acts as the entry point for the users to
load and process their design files. Additionally, the
tool provides a broad set of optimization commands,
with global optimization commands and more granular
optimization commands for experienced users.

• LEF/DEF readers and writers: the tool provides the
user with an interface to read and write design files. The
interface uses OpenDB’s Si2 LEF/DEF parsers internally
to process the design into the database.



2

User's Tcl Interface

LEF/DEF
Reader/Writer

Database
Handler

OpenDB

OpenSTA

Timing Buffer
Transform

Timing Repair
Transform

Pin-swap Transform

Fan-out Repair
Transform

Constant Propagation
Transform

Gate-cloning
Transform

Transformations
Handler

Fig. 1: Overview of OpenPhySyn Architecture.

• Transforms Handler: this component provides a mod-
ular interface for any optimization implemented in the
tool. The handler has a dynamic interface to allow loading
any optimization implementation in compile-time or run-
time. OpenPhySyn uses its internal Transforms Handler
to implement an essential set of optimization algorithms;
the optimizations can be easily chained and evaluated.

• Database Handler: this module acts as the primary
layer in OpenPhySyn’s architecture. Firstly, it provides
a generic interface to edit the design structure with
access to different components. Secondly, it provides
an interface to query the incremental timers or analyze
various design violations giving the user the flexibility to
interchange the design database or the incremental timer
with any other third-party tools with minimal changes to
the optimization algorithms. Thirdly, it provides a broad
set of utilities and helpers to facilitate the development
of any new algorithm. Finally, it encompasses a Boolean
logic simulator that can extract and analyze any standard
cell’s logic functionality and perform Boolean simula-
tions used in logic optimization. Fig. 2 summarizes the
different modules provided by the database handler to
provide the mentioned functionality:

– Design Utilities & Helper Algorithms: The module
provides a broad set of algorithms and utilities to
interface with the loaded design and implementation
for common useful algorithms. The provided built-
in optimizations use the exported methods from the
database handler, demonstrating the reuse of the
shared infrastructure between different transforms

– Steiner Tree Heuristics: The module provides meth-
ods to construct and use Steiner trees using the
estimation heuristics from the FLUTE package [10].
The constructs provide different computation meth-
ods for the Steiner trees, such as the total wire length
estimation and total capacitance/resistance for the
given wire trees.

– Constraints & Violation Checkers: The module
provides a set of different flexible functionalities that
can detect and highlight different types of violations
in the design. The checkers are used by the built-in
optimizations to extract the targeted violations to fix

while supporting variable constraints provided by the
user.

– Boolean Simulator: The module provides a Boolean
evaluator that uses the Boolean functions defined
in the liberty file to simulate the design’s logic
functionality. The simulator can analyze the different
functionality of each cell, extract the liberty cells for
a given cell type (e.g., buffers, inverters, AND gates),
or simulate any given input values to the cells.

– Timer (OpenSTA) and Parasitcis Engines Inter-
faces: The module provides a timer and parasitics
interfaces to interact with any provided time or
parasitics extractor. The interface exposes several
methods to perform any timing-based computations
through OpenSTA internally, or query the parasitic
information for different design components.

– Legalizer Interface: The module provides an inter-
face to integrate a placer to run incremental legal-
ization throughout the optimizations. While Open-
PhySyn is not equipped with a built-in legalizer,
the optimization commands support the legalization
interface allowing the user to easily plugin their
placer to do incremental legalization throughout the
optimization phases.

– Database (OpenDB) Interface: The module pro-
vides an interface to the database infrastructure
to load and manipulate the different design data
structures. The interfaces provide access to different
design blocks implemented by OpenDB without the
need for internal knowledge of the database’s com-
plexities.

OpenSTA Interface OpenDB Interface

Legalizer Interface Parasitics Interface

Boolean Simulator

Design Utilities Helper Algorithms

Violations Checker

Steiner Tree
Heuristics

Constraints Checker

Fig. 2: OpenPhySyn Database Handler modules.

B. OpenPhySyn Optimization Transforms

OpenPhySyn aims at tackling design violations with min-
imal area overhead. Hence, the tool includes a standard set
of optimizations that addresses different types of violations
while minimizing the added area as a secondary objective. The



3

algorithms use several design optimization techniques such as
buffer insertion, gate sizing, commutative pin swapping, gate
cloning, and logic transformation. The tool exports commands
for the following optimizations and utilities included by default
in the tool’s source code:

• Buffer library selection: this approach automatically
selects a set of a representative buffer from the library
with a given size using the buffer clustering technique by
Alpert et al. [11]. The algorithm relies on clustering the
buffers based on their intrinsic characteristics, resulting
in a representative set of buffers to solve the optimization
problems more time-efficiently. The selected buffers are
used by further buffering algorithms or exported to be
utilized by other optimization flows.

• Timing-driven buffering: this optimization performs fast
buffer cell insertion [6] across the design to improve
timing and solve violations.

• Logic transformation: this optimization performs logic
transformation to replace different blocks from the de-
signs with other logically-equivalent components to solve
violations in a more area-efficient manner. Fig. 3 shows
an example of the logic transformations performed to
optimize the design while using the logic function to
reduce the area overhead.

Fig. 3: Example of optimization of the block (a) through
logic transformations to block (b) while keeping the logic
functionality intact.

• Fan-out repair: this optimization performs a fast pass
to break down large fan-out trees through buffer tree in-
sertion to distribute the high fan-out and solve maximum
fan-out violation.

• Commutative pin swapping: this optimization utilizes
the Boolean simulator provided in the database handler to
extract logically-commutative pins across the critical de-
sign paths followed by applying pin swapping to enhance
the path delays without affecting the logic functionality
of the circuit.

• Constant propagation: this optimization performs
Depth-Fist-Search-based constant propagation across the
design to eliminate redundant logic and save area. The
optimization can be run after the logical synthesis, espe-
cially in hierarchical designs, to reduce the cell area by
eliminating unnecessary cells.

• Gate cloning: this optimization performs load-driven
gate cloning to reduce the load for cells driving high
capacitance [3] [12].

• Comprehensive timing repair: this comprehensive op-
timization utilizes the previously described approaches:

buffer selection, buffer insertion, gate sizing, pin swap-
ping, gate cloning, and logic transformation through a
composition strategy to solve electrical and timing viola-
tions efficiently. The optimization selects one or more
techniques to solve each violation based on the state
of the design. The command provides different control
flags to customize the optimization’s behavior as needed,
such as controlling the pessimism level for optimiza-
tion, specifying the minimum accepted gain, enabling
or disabling different techniques, and run-time versus
quality trade-off. Additionally, the optimization supports
using a detailed placer interface to perform incremental
legalization during the optimization if the user links any
third-party placer.

C. Optimization Modes and Violation Types

OpenPhySyn optimizations tackle different types of viola-
tions, including electrical violation (caused by capacitance and
transition limits), hold and setup violations (caused by path de-
lays), and fan-out violations (caused by high fan-out pins). To
accommodate for parasitics and estimation error, OpenPhySyn
optimizations support pessimistic, ideal, and optimistic modes.
This allows OpenPhySyn to meet tighter constraints, increas-
ing the design tolerance for violations introduced in further
flow stages. Additionally, the tool accommodates for more
user-defined constraints such as the maximum utilization or
custom dont-use cells.

D. OpenPhySyn Flow Integration

OpenPhySyn is designed and structured to integrate seam-
lessly with other EDA flow tools. As mentioned earlier,
the tool provides flexible modules to interface with an in-
cremental timer or structural design database. Additionally,
the tool provides an interface to integrate placement tools
to enable incremental legalization, which is supported with
different modes by the provided optimization. Moreover, the
tool supports different modes for wire parasitics estimation:
providing average custom wire parasitics, automatic extraction
for average wire parasitics from the LEF file, or interfacing
with any external parasitics engine. By default, the wire length
is estimated using Steiner trees [13] from FLUTE package [10]
and used throughout different optimizations.

III. EVALUATION

A. Setup

For the experimental evaluation, we selected six designs
from different fields with different sizes and characteristics.
We ran our tests using a commercial 65nm technoloy. We used
Yosys [14] and ABC [15] for the logic synthesis, followed by
OpenROAD [9] for floorplanning and placement. The para-
sitics were estimated from the third metal layer in the LEF file.
We passed the placed designs to OpenPhySyn to perform the
various optimizations to solve timing and electrical violations.
Finally, we performed a legalization pass using OpenDP [9].
We evaluated the results in comparison with OpenROAD’s
optimization flow [9] using the same setup conditions. Table I



4

Initial State of the Benchmark OpenROAD Optimization Flow OpenPhySyn Optimization Flow
Design #INST AREA CLK #TRNS #CAP WNS TNS ∆AREA #TRNS #CAP WNS TNS ∆AREA #TRNS #CAP WNS TNS

(um2) (ns) Viols. Viols. (ns) (ns) (%) Viols. Viols. (ns) (ns) (%) Viols. Viols. (ns) (ns)
gcd 294 1271 3.50 1 1 -1.44 -33.34 55.09 0 0 0.00 0.00 6.94 0 0 0.00 0.00
dn 8523 51943 7.50 153 157 -2.82 -16.56 44.99 0 0 0.00 0.00 0.61 0 0 0.00 0.00
ibex 22729 100106 23.00 361 313 -1.85 -53.08 78.52 1 1 0.00 0.00 0.53 0 0 0.00 0.00
tinyRocket 26300 122354 14.00 458 468 -1.51 -548.39 82.08 1 2 0.00 0.00 0.19 0 1 0.00 0.00
bp be 42785 386850 20.00 3076 3032 -4.97 -91.76 89.37 480 494 0.00 0.00 8.47 0 1 0.00 0.00
jpeg 60440 262284 41.00 1763 1607 -3.90 -51.12 94.99 263 268 0.00 0.00 8.12 0 0 0.00 0.00
Average 74.17 124.17 127.50 0.00 0.00 4.14 0.00 0.33 0.00 0.00

TABLE I: Evaluation of the optimization flow on the selected benchmarks. The first section shows the names of the evaluated
benchmarks, total number of cells, design area in square micrometers, clock period in nanoseconds, initial number of transition
violations, initial number of capacitance violations, initial worst negative slack in nanoseconds, initial total negative slack in
nanoseconds. The following section shows the percentage increase in design area, total number of transition violation, total
number of capacitance violations, worst negative slack in nanoseconds, total negative slack in nanoseconds after optimizin the
commands using OpenROAD. The last section shows the same metrics after optimizing the designs through OpenPhySyn.

gives the initial state of the chosen benchmarks after placement
listing their respective number of cells, area in square microm-
eters, clock period in nanoseconds, initial number of transition
violations, initial number of capacitance violations, initial
worst negative slack in nanoseconds, initial total negative slack
in nanoseconds, percentage increase in the design area, the
number of transition violations, the number of capacitance
violations, worst negative slack in nanoseconds, and total neg-
ative slack in nanoseconds when optimized by OpenROAD’s
flow compared against OpenPhySyn’s optimization’s flow. As
shown from Table I, OpenPhySyn gives superior results where
it solves most of the presented violations with an average 4%
area overhead compared to OpenROAD’s flow that adds an
average 19% area overhead while failing to solve many of the
presented violations.

IV. CONCLUSION AND FUTURE DIRECTION

We presented OpenPhySyn, a novel open-source physical
synthesis optimization kit that tackles modern EDA timing
closure challenges. The tool utilizes a modular architecture
and provides an infrastructure to facilitate the development
of physical optimizations. OpenPhySyn is designed to work
seamlessly within a full EDA flow by using standard input
and output formats for the processed design. Moreover, Open-
PhySyn includes and enhances many of the standard EDA
optimization algorithms. Additionally, OpenPhySyn performs
intelligent compositions for the packaged algorithms to opti-
mize the loaded designs efficiently. We evaluated OpenPhySyn
against different benchmarks and compared them against
OpenROAD’s optimization flow showing superior results in
both the area overhead and the number of solved violations.
Our future work is to extend OpenPhySyn to design and
implement more EDA algorithms to solve more complex
violations with better efficiency.

V. ACKNOWLEDGMENT

OpenPhySyn is available open-source in the public
domain under the BSD-3-Clause License accessible at
https://github.com/scale-lab/OpenPhySyn. The tool is tested
on Linux and macOS platforms using different commercial
libraries, including 65nm, 45nm, and 14nm technology nodes.

The authors would like to acknowledge Prof. Andrew B.
Kahng and Tom Spyrou from UCSD for their feedback on
OpenPhySyn.

REFERENCES

[1] P. Saxena, N. Menezes, P. Cocchini, and D. A. Kirkpatrick, “Repeater
scaling and its impact on cad,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 23, no. 4, pp. 451–463,
2004.

[2] N. D. MacDonald, “Timing closure in deep submicron designs,” DAC
Knowledge Center Article, 2010.

[3] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, VLSI physical design:
from graph partitioning to timing closure. Springer Science & Business
Media, 2011.

[4] L. P. Van Ginneken, “Buffer placement in distributed rc-tree networks
for minimal elmore delay,” in IEEE International Symposium on Circuits
and Systems. IEEE, 1990, pp. 865–868.

[5] S. K. Karandikar, C. J. Alpert, M. C. Yildiz, P. Villarrubia, S. Quay, and
T. Mahmud, “Fast electrical correction using resizing and buffering,” in
2007 Asia and South Pacific Design Automation Conference. IEEE,
2007, pp. 553–558.

[6] W. Shi and Z. Li, “A fast algorithm for optimal buffer insertion,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 24, no. 6, pp. 879–891, 2005.

[7] “Opensta: Static timing analyzer, https://github.com/the-openroad-
project/opensta.”

[8] “Opendb: Database and tool framework for eda, https://github.com/the-
openroad-project/opendb.”

[9] T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B.
Kahng, M. Kim, J. Lee, U. Mallappa, M. Neseem et al., “Toward an
open-source digital flow: First learnings from the openroad project,” in
Proceedings of the 56th Annual Design Automation Conference 2019,
2019, pp. 1–4.

[10] C. Chu and Y.-C. Wong, “Flute: Fast lookup table based rectilinear
steiner minimal tree algorithm for vlsi design,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 27,
no. 1, pp. 70–83, 2007.

[11] C. J. Alpert, R. G. Gandham, J. L. Neves, and S. T. Quay, “Buffer library
selection,” in Proceedings 2000 International Conference on Computer
Design. IEEE, 2000, pp. 221–226.

[12] A. Srivastava, R. Kastner, C. Chen, and M. Sarrafzadeh, “Timing driven
gate duplication,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 12, no. 1, pp. 42–51, 2004.

[13] T. Okamoto and J. Cong, “Buffered steiner tree construction with wire
sizing for interconnect layout optimization,” in Proceedings of the 1996
IEEE/ACM international conference on Computer-aided design. IEEE
Computer Society, 1997, pp. 44–49.

[14] C. Wolf, “Yosys open synthesis suite,” 2016.
[15] A. Mishchenko, “Abc: A system for sequential synthesis and verification,

berkley logic synthesis and verification group,” URL http://www. eecs.
berkeley. edu/alanmi/abc/abc. html, 2012.


