
Universal Hardware Data Model
Alain Dargelas, PhD,

Data Model Solutions, LLC,
Santa Clara, CA, USA

alain.dargelas@gmail.com

Henner Zeller, Google,
Mountain View, CA, USA,

hzeller@google.com

Abstract—The Universal Hardware Data Model (UHDM) [1]
open-source project aims at enabling open-source Electronic
Design Automation (EDA) tools to support the entire
SystemVerilog 2017 Standard [2]. On one side parsers like
SureLog [3] parse and populate the UHDM model and on the
other side client tools like Synthesis, Simulation, Linter and so on
read back from the compiled model and perform their respective
tasks.

Keywords—SystemVerilog 2017, Open-source Verilog Parser,
Persistent Data Model, Verilog Procedural Interface.

I. INTRODUCTION

The EDA open-source ecosystem lacks at present the
complete support for the SystemVerilog 2017 language. The
goal of the UHDM Data Model is to fill this void and enable
the entire ecosystem to support SystemVerilog in its entirety.

To that extend a complete SystemVerilog 2017
Preprocessor/Parser/Compiler/Elaborator has been developed:
SureLog [3]. SureLog parses the user’s SystemVerilog and
performs the tasks of compiling and elaborating the design and
testbench then populates the UHDM data model which is
persisted on disk. UHDM is then used in development
adaptations of applications like Yosys [4], Verilator [5] and is
translated into their respective native data structures by
translation layers like Yosys-UHDM integration [6], Verilator-
UHDM integration [6], or used as a standalone data structure
by the client application. The ecosystem is also open for other
parsers/compilers to populate the UHDM model.

At the time of this publication we are working toward
Synthesizing and Simulating the OpenTitan Root of Trust
Design [7] using the SureLog-UHDM-Verilator/Yosys flow to
validate the complete stack.

II. UHDM

A) SystemVerilog Object Model

Since the beginning of the Verilog language, an integral
part of the Verilog Standard is the Verilog Object Model. We
have decided to follow the SystemVerilog Object Model as
closely as possible as the Schema for the UHDM Model. One
of the advantages is the widespread knowledge of the Verilog
Object Model and its modern interface, the Verilog Procedural
Interface (VPI) [8]. The Standard Verilog Object Model was
designed as an API to Simulators and is fully elaborated and
bit-blasted, we had to take some digressions like making the
Elaboration optional post re-load and avoid bit-blasting as
much as possible, as bit blasting makes a lot of client
applications not efficient and has to be delayed in the flow or
avoided as much as possible.

B) UHDM Features

The UHDM model is captured in a Yaml-like [9] markup
language, and represents the entire schema present in the
SystemVerilog Object Model in pages 973-1050 of the IEEE
Std 1800-2017, one yaml file per diagram in the model.

Examples of UHDM models captured in Yaml:

- class_def: instance
 - extends: scope
 - property: definition_name
 vpi: vpiDefName
 type: string
 card: 1
- group_def: stmt
 - class_ref: scope
 - class_ref: atomic_stmt
 - class_ref: expr
 - group_ref: assertion

We had to support several concepts in order to properly
capture all the types of relations present in the diagrams:
Abstract class (class def), Concrete object (obj def), Inheritence
(extends), Group (group def, similar to void* with runtime
checks for group membership), Composition (class ref/object
ref/group ref).

From this Yaml meta model, a code gererator developed by
the authors generates the following code automatically:

 - C++ implementation (Classes)

 - Serialization/deserialization using the Capnp library [10]. To
be noted that the Capnp code is hidden from the API user, and
the deserialized UHDM data structure (C++ classes) is
read/writeable (unlike Capnp typical data structure use model
which are read-only after deserialization).

- A Walker that creates a humanly readable text dump of the
UHDM data model

- A C++ Listener Design Pattern over the entire model

- An optional Elaborator/Uniquification that can be invoked
pre-serialization or post-deserialization

- The corresponding C Standard VPI interface as a facade to
the C++ model

C) Deviations from the Standard

As mentioned previously, there are a few instances
where the Simulation-centric bit blasted Verilog Object Model
was not convenient. This is where we took some liberties to
deviate from the Standard.

This publication resulted (in part) from work supported by Google.
The content is solely the responsibility of the authors and does not necessarily represent the official views of Google.

mailto:alain.dargelas@gmail.com

- The “ref obj” is used in UHDM everywhere a reference to a
named object is necessary instead of presenting the bonded
object itself, the ref obj is presented to the user and the
vpiActual property of the ref obj points to the object the ref
obj is binding to. In the Standard VPI presented by
commercial EDA tools this indirection is not present, but
comes at the price of having another intermediate data
structure to perform the binding behind the scenes.
- UHDM is not bit-blasted, unlike the Standard Model. Arrays
for instance are kept as arrays and not individual bits of the
array. The memory savings both in the persisted representation
and at runtime is colossal. Client applications can perform
their own bit-blasting on demand.
- By default UHDM is not elaborated, again deviating from
the Standard, but an optional Elaboration is offered and it can
be invoked before serialization or after deserialization.
- A few Groups of objects are extended to support “ref obj” or
similar more encompassing object types.
- The package import statement is made explicitly part of the
model, it facilitates symbol lookup in the client applications.
- A unique ID, a ClientData (void*) pointer and UHDM object
type enums are offered as convenient extensions for client
applications that wishes to use the UHDM data model as their
main runtime datastructure (free standing). As a side note, at
the time of this writing there are a couple of open-source
projects that are in the process of creating their own
applications based on UHDM and they make use of these
extensions.
- A “design” vpiHandle is added as the top level handle of a
design so multiple designs or partitions of a single design can
coexist at the same time. This also opens the possibility for
supporting multiple language (VHDL/Verilog) designs in the
future. All objects of a design root at that object. In
comparison the standard VPI has a NULL top level object to
iterate top level constructs ie.: vpi_iterate(vpiModule, NULL).
- All of the deviations are documented in the Yaml models.

D) UHDM in the Compiler flow

UHDM comes in the form of a dynamic or static C++ library
that is used in the SureLog parser (or other parser) to generate
the persistent SystemVerilog Object Model after Parsing,
Compilation and partial Elaboration (SureLog
implementation). The same libuhdm.a library is then used in
the respective client applications like a Simulator (Verilator)
or a Synthesis tool (Yosys) to retrieve the persisted object
model and populate the respective client application data
structures.

Illustration of the flow:

E) Client-side APIs

 1. The C++ API is comprised of a set of classes, that represent
- virtual classes (literally using virtual classes), i.e. the
“instance” class in the Verilog Object Model
- classes that represent the concrete objects in the model like
the “module” object.
- getter and setter methods that follow the VPI naming
scheme.

C++ API header example:

namespace UHDM {
 class instance : public scope {
 public:
 bool VpiDefName(const std::string& data);
 …
 };
 class module : public instance {
 public:
 virtual const BaseClass* VpiParent() const;
 virtual const std::string& VpiFile() const;
 …
 };
};

2. The VPI C API implements the standard sv_vpi_user.h
functions like vpi_get, vpi_get_str, vpi_get_value, vpi_scan,
vpi_iterate, vpi_get_by_name for all objects in the
SystemVerilog Object Model. The integer values returned
from vpi_get or passed as arguments follow the vpi_user.h and
sv_vpi_user.h defines.

3. A C++ Listener Design Pattern is offered on top of the C++
and VPI API allowing the client application that is interested
in a convenient way to skip over relations and be able navigate
the data model.

Example of custom listener code:

class MyVpiListener : public VpiListener {
protected:
 void enterModule(const module* object,
 const BaseClass* parent,
 vpiHandle handle,
 vpiHandle parentHandle) {
 const char* parentName =
 vpi_get_str(vpiName, parentHandle);
 }
 …
};

int main (int argc, char** argv) {
 UHDM::Serializer ser;
 std::string uhdmfile = argv[0];
 std::vector<vpiHandle> designs =
 ser.Restore(uhdmfile);
 MyVpiListener* listener = new MyVpiListener();
 listen_designs(designs,listener);
}

III. SURELOG

A) Preprocessor, Parser

We mentioned that the first implementation of a parser to
generate the UHDM Object Model is the SureLog parser.
SureLog is an Antlr4.7 [11] based multi-threaded or multiple
processes preprocessor and parser for the entire
SystemVerilog 2017. The grammar files have been tested on a
wide range of open-source cores and SystemVerilog UVM
testbench code.
Both the preprocessor and the parser are incremental, they
only recompile source code that changed and persist the
syntax trees on disk using a mechanism developed by the
author on top of Antlr. This makes up for the relatively slow
first compile but very fast subsequent incremental compiles.
The syntax trees are represented with a child-sibling ID
scheme, 0 terminated, which allows for elegant and fast tree
traversal used in the subsequent compilation and elaboration
phases.
The parser precompiles the UVM and OVM packages syntax
trees which allows for fast recovery when compiling a user
design. It takes about 70 seconds on a single thread to
precompile the UVM package and about 300ms to retrieve it
from disk.
The preprocessor/parser supports both the “Interpreted”
Verilog compilation semantic and the “Separate Compilation
Unit” semantic through an option. It also supports Libraries
and Configurations.

B) Compiler

The compiler currently compiles all the Synthesizable subset
of the language, a fair amount of Assertions, and Classes
definitions, it creates placeholders for Constraints and other
Testbench related concepts in the UHDM model. The final
goal is to compile UHDM models for the entire Testbench
aspects of the language as well.

C) SureLog and UHDM Elaborators

The SureLog Elaborator supports all flavors of parameter
passing, including defparams. It does perform generate
statement evaluations and hierarchy tree expansion. As an
example, the resulting UHDM model only contains the active
branch in an if-else generate statement, SureLog does not
populate UHDM with the inactive branch of the statement. We
have tested it on designs like BlackParrot [12] and OpenTitan
[7] which make a good use of these features. The SureLog
Elaborator only uniquifies the instances though, it does not
uniquify nets.

After the SureLog Elaboration, the model is still a Folded
Model. The task to unfold the model completely is left for the
UHDM Elaborator which creates unique net IDs and deep
clone all the statements in the instance tree.

D) Design Coverage

SureLog produces a form of Coverage of objects represented
in UHDM in regard to the original syntax tree, highlighting

places that are not compiled or elaborated, or still unsupported
statements in the SureLog to UHDM translation.
Legend:
- Grey is source text that has a corresponding object covered
in the UHDM Model
- White text is not processed at all (No AST representation
like comment sections, or unaccounted for statements like
“end statement” that does not need a corresponding object in
the UHDM model)
- Red is source text with no representation in UHDM but
present in the Parser AST. In the case below the else branch of
the if-else generate statement is not active hence not populated
in the UHDM model. Only the if branch (Deemed active by
the SureLog Elaborator) has corresponding objects in UHDM.
In that case, it is OK for the code not to be in UHDM. We still
mark it in red to warrant visual inspection. Users can ask
themselves the question: “Is this code really intended to be left
out?”. On the other hand unsupported statements are not OK
and require attention on our end when supporting new designs.

A convenient hyperlinked top level page is generated with all
the files compiled and their UHDM coverage.
In the example below, the low coverage is due to inactive
branches in the generate statements. A Quick view allows the
reader to browse only the “uncovered code” allowing
identification of unsupported constructs. This mechanism
allows us to quickly identify the parts of the compiler that
requires our attention when supporting a new RTL design.

IV. SURELOG-UHDM-VERILATOR

At the time of this writing we are actively working on
simulating the OpenTitan core design using the SureLog-

UHDM-Verilator flow. The Verilog model converges in
Verilator and we are making it working module by module.

Verilator integration:

V. SURELOG-UHDM-YOSYS

At the time of this writing we are actively working to
Synthesize the OpenTitan core design using the SureLog-
UHDM-Yosys flow. All modules in the design compile and
we are at the stage where we are debugging logic errors
module by module.

Yosys integration:

VI. SV-TESTS COVERAGE

SureLog is running part of the sv-tests [13] regression
framework and enjoys the top rank in terms of numbers of
passing tests among all open-source parsers. It is also the
slowest due to the use of the C++ Antlr runtime and the full
compilation and serialization it does perform.
sv-tests HTML report:

Future work includes optimizing the Antlr runtime for parsing
speedup and finishing the complete language support in the
compiled UHDM model along with ensuring complete support
of all the open-source popular designs and their UVM tests.

REFERENCES

[1] UHDM: https://github.com/alainmarcel/UHDM

[2] SystemVerilog 2017:
http://ecee.colorado.edu/~mathys/ecen2350/IntelSoftware/pdf/IEEE_Std
1800-2017_8299595.pdf

[3] SureLog: https://github.com/alainmarcel/Surelog

[4] Yosys: http://www.clifford.at/yosys/

[5] Verilator:https://www.veripool.org/wiki/verilator

[6] UHDM - Verilator and Yosys integration:
https://github.com/alainmarcel/uhdm-integration

https://github.com/antmicro/verilator/tree/uhdm-verilator

https://github.com/antmicro/yosys/tree/uhdm- yosys

[7] OpenTitan design: https://opentitan.org/

[8] VPI: https://ieeexplore.ieee.org/document/496013

[9] Yaml: https://yaml.org/

[10] Capnp: https://capnproto.org/capnp-tool.html

[11] Antlr: https://www.antlr.org/index.html

[12] Blackparrot: https://github.com/black-parrot

[13] sv-tests; https://github.com/SymbiFlow/sv-tests

https://www.antlr.org/index.html
https://github.com/SymbiFlow/sv-tests
https://github.com/black-parrot
https://github.com/alainmarcel/UHDM
https://capnproto.org/capnp-tool.html
https://yaml.org/
https://ieeexplore.ieee.org/document/496013
https://opentitan.org/
https://www.veripool.org/wiki/verilator
http://www.clifford.at/yosys/
https://github.com/alainmarcel/Surelog
http://ecee.colorado.edu/~mathys/ecen2350/IntelSoftware/pdf/IEEE_Std1800-2017_8299595.pdf
http://ecee.colorado.edu/~mathys/ecen2350/IntelSoftware/pdf/IEEE_Std1800-2017_8299595.pdf
https://github.com/antmicro/verilator/tree/uhdm-verilator
https://github.com/antmicro/verilator/tree/uhdm-verilator
https://github.com/alainmarcel/uhdm-integration

	I. Introduction
	II. UHDM
	A) SystemVerilog Object Model
	B) UHDM Features
	C) Deviations from the Standard
	D) UHDM in the Compiler flow
	E) Client-side APIs

	III. SURELOG
	A) Preprocessor, Parser
	B) Compiler
	C) SureLog and UHDM Elaborators
	D) Design Coverage

	IV. SURELOG-UHDM-VERILATOR
	V. SURELOG-UHDM-YOSYS
	VI. sv-tests COVERAGE
	References

