
Taskflow: A General-purpose Parallel and Heterogeneous Task
Programming System for VLSI CAD

h�ps://taskflow.github.io

Tsung-Wei Huang
Department of ECE
University of Utah

twh760812@gmail.com

ABSTRACT

This paper introduces Task�ow to address the critical question

of “How can we make it easier to implement and deploy paral-

lel computer-aided design (CAD) algorithms on large heterogeneous

nodes with high performance and simultaneous high productivity?”

Parallelizing CAD is an extremely challenging job. Modern CAD

applications exhibit unique computational patterns and user re-

quirements that need very strategic decomposition to bene�t from

parallelism. Task�ow assists researchers and developers in the im-

plementation complexity of parallel algorithms by introducing a

new high-level programming model supported by an e�cient run-

time. By capitalizing on emerging parallelism comprising many-

core central processing units (CPUs), graphics processing units

(GPUs), and custom accelerators, Task�ow enables CAD to achieve

new performance and productivity milestones that were previ-

ously out of reach.

KEYWORDS

Parallel programming, computer-aided design

ACM Reference Format:

Tsung-Wei Huang, Department of ECE, Uni-

versity of Utah, twh760812@gmail.com

. 2020. Task�ow: A General-purpose Parallel and Heterogeneous

Task Programming System for VLSI CAD: https://task�ow.github.io.

In Workshop on Open-Source EDA Technology (WOSET), Novem-

ber 5, 2020, Virtual Event, USA. ACM, New York, NY, USA, 2 pages.

https://doi.org/10.1145/3400302.3415750

1 INTRODUCTION

The ever-increasing design complexity in very-large-scale integra-

tion (VLSI) implementation will soon far exceed what many ex-

isting computer-aided design (CAD) tools are able to scale with

reasonable design time and e�ort (see Figure 1). A key fundamen-

tal challenge is that CAD must incorporate new parallel paradigms

comprising manycore central processing units (CPUs), graphics

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

WOSET ’20, November 5, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8026-3/20/11. . . $15.00
https://doi.org/10.1145/3400302.3415750

processing units (GPUs), and custom accelerators to allow more

e�cient design space exploration and optimization [1–3]. How-

ever, parallelizing CAD is an extremely challenging job. Modern

CAD applications exhibit unique computational patterns and user

requirements that need very strategic decomposition to bene�t

from parallelism [4, 5]. For example, timing analysis makes essen-

tial use of dynamic control �ow to implement various computa-

tional patterns acrossmillions to billions dependent tasks [6, 7]. It is

too di�cult to achieve transformational performance milestones

without the aid of high-level programming models and system

runtimes that target the unique parallelization challenges of CAD.

This type of system innovation has profound impacts on the CAD

community because it complements the current state-of-the-art by

assisting everyone to tackle the challenges of implementing and

deploying parallel CAD algorithms. Unfortunately, related system

research has received very little attention in the CAD community.

!"#$%&'#(%)*+,%))'#-'.*/#*012*

&".(*3'*.4)5'$*(4*6'$"+'*)%6-'*

$'./-#*(/&'*%#$*'7746(

!"#$%&%'("%)*+,849*+%#*9'*:'';*012*";*9/(,*<446'=.*>%9?

!-./$(0(123$(4-33333333567335873339:3333;:333338<3333<<333335;

577

=:

:7

<:

7
5>67333333333336:3333333333333>733333333333333>:3333333333<777333333333337:3333333333333357333333333333335:

57?

577+

5+

57@

577

!"#$%&%'("%3A-"3./&A

!('#03BC3.(%'

D-%&1$3.(%'

E-"&F&.#'&($3.(%'

Figure 1: Design cost versus design complexity [8].

Over the past years, we have invested a lot of research and

development (R&D) e�ort in existing programming systems from

the scienti�c computing community, including pthread, OpenMP

task [9], TPL [10], Cilk [11], StarPU [12], HPX [13], PaRSEC [14],

Kokkos [15], XKAAPI [16], and Charm++ [17]. However, almost all

existing programming systems fail to e�ectively parallelize CAD

because they were not fundamentally designed with CAD’s unique

computational patterns and user requirements in mind, which we

explain as follows:

• Complex control �ow. Optimization-driven workloads such

as logic synthesis, placement, and routing make essential use of

https://doi.org/10.1145/3400302.3415750
https://doi.org/10.1145/3400302.3415750

dynamic control �ow to implement various combinatorial and an-

alytical algorithms that incorporate conditional, cyclic, and non-

deterministic computational patterns. Existing task program-

ming frameworks such as OpenMP [9], Kokkos [15], TBB [18],

and PaRSEC [14] closely rely on directed acyclic graph (DAG)

models to de�ne tasks and their dependencies. Users implement

control-�ow decisions outside the graph description via either

statically unrolling the graph across �xed-length iterations or

resorting to client-side decisions. This organization typically re-

sults in rather complicated procedure that lack end-to-end paral-

lelism.

• Complex taskdependencies.Analysis-driven workloads such

as timing and power analysis require computations to propagate

through the circuit network. Di�erent quantities (e.g., slew, ar-

rival time) are often dependent on each other, either logical re-

lation or physical net order, and are expensive to compute. The

resulting task graph in terms of encapsulated function calls and

task dependencies is typically very large. During incremental

analysis, data can arrive sparsely or densely and can run on

CPUs, GPUs, or more frequently a mix. Existing frameworks

such as task functors [15], templates [18], and C-styled point-

ers [12] are restrictive to �xed-memory layout. There are no

easy ways to describe up-front parallelism for an incremental

loop where the circuit graph structure and task dependencies

keep changing.

After years of research, we have arrived at a key conclusion:

While designing parallel CAD algorithms is non-trivial, what

makes parallelizing CAD an enormous challenge is the infrastruc-

ture work of “e�ciently expressing dependent tasks along with algo-

rithmic control �ow and scheduling them across heterogeneous com-

puting resources.”

2 TASKFLOW

We will present in this workshop Task�ow [19], a general-purpose

parallel task programming system, that we have been develop-

ing for years to streamline the building of parallel CAD tools. By

capitalizing on emerging parallelism comprising manycore CPUs,

GPUs, and custom accelerators, Task�ow enables CAD to achieve

new performance and productivity milestones that were previ-

ously out of reach. Speci�cally, we cover three topics:

• Programming model. We present the novel powerful hetero-

geneous programming model inspired by the parallelization

challenges of CAD such that developers can e�ciently express

a wide range of CAD workloads using minimal programming

e�ort.

• System runtime. We present the e�cient system runtime (i.e.,

task execution environment) to support our programming mod-

els with high performance. Our runtime solves many of the new

scheduling challenges arising out of our models and optimize

the system performance across latency, energy e�ciency, and

throughput.

• Application. We present two applications, static timing analy-

sis and detailed placement, to which we have applied Task�ow.

We show that when Task�ow is leveraged to implement par-

allel CAD algorithms, many implementation challenges can be

largely mitigated, and new parallel CAD algorithms and frame-

works can proliferate.

Task�ow is open-source at [19], including step-by-step tutori-

als, application programming interface (API) reference, and bench-

marks. We are actively developing and maintaining Task�ow.

Since its �rst release in 2018, we have accumulatedmore than 500K

downloads and helped many research and academic projects (in-

cluding our timing research [20, 21]) improve their performance

through parallelism. We have demonstrated the promising perfor-

mance of Task�ow in various CAD applications and scienti�c com-

puting workloads [7, 22–24].

REFERENCES
[1] Andrew B. Kahng. Reducing Time and E�ort in IC Implementation: A Roadmap

of Challenges and Solutions. In IEEE/ACM DAC, 2018.
[2] Yi-Shan Lu and Keshav Pingali. Can Parallel Programming Revolutionize EDA

Tools? Advanced Logic Synthesis, 2018.
[3] Leon Stok. The Next 25 Years in EDA: A Cloudy Future? IEEE Design Test,

31(2):40–46, 2014.
[4] A. Ng and I. L. Markov. Toward quality EDA tools and tool �ows through high-

performance computing. In ISQED, pages 22–27, 2005.
[5] B. Catanzaro,K. Keutzer, and Bor-Yiing Su. Parallelizing CAD: A timely research

agenda for EDA. In ACM/IEEE DAC, pages 12–17, 2008.
[6] Tsung-Wei Huang and Martin D. F. Wong. OpenTimer: A high-performance

timing analysis tool. In IEEE/ACM ICCAD, pages 895–902, 2015.
[7] Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin Wong. Cpp-

Task�ow: Fast Task-based Parallel Programming using Modern C++. In IEEE
IPDPS, pages 974–983, 2019.

[8] DARPA: Intelligent Design of Electronic Assets (IDEA).
https://www.darpa.mil/program/intelligent-design-of-electronic-assets.

[9] E. Ayguade, N. Copty, A. Duran, J. Hoe�inger, Y. Lin, F. Massaioli, X. Teruel,
P. Unnikrishnan, and G. Zhang. The Design of OpenMP Tasks. TPDS, 20(3):404–
418, 2009.

[10] Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. The Design of a Task
Parallel Library. In ACM OOPSLA, pages 227–241, 2009.

[11] Charles E. Leiserson. The Cilk++ concurrency platform. The Journal of Super-
computing, 51(3):244–257, 2010.

[12] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André; Wacre-
nier. StarPU: A Uni�ed Platform for Task Scheduling on Heterogeneous Multi-
core Architectures. Concurr. Comput. : Pract. Exper., 23(2):187–198, 2011.

[13] Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio, and Di-
etmar Fey. HPX: A Task Based Programming Model in a Global Address Space.
In PGAS, pages 6:1–6:11, 2014.

[14] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. J. Dongarra.
PaRSEC: Exploiting Heterogeneity to Enhance Scalability. Computing in Science
Engineering, 15(6):36–45, 2013.

[15] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos: En-
abling manycore performance portability through polymorphic memory access
patterns. Journal of Parallel and Distributed Computing, 74(12):3202 – 3216, 2014.

[16] T. Gautier, J. V. F. Lima, N.Maillard, and B. Ra�n. XKaapi: A Runtime System for
Data-Flow Task Programming on Heterogeneous Architectures. In IEEE IPDPS,
pages 1299–1308, 2013.

[17] Laxmikant V. Kale and Sanjeev Krishnan. Charm++: A Portable Concurrent
Object Oriented System Based on C++. In ACM ASPLOS, page 91–108, New
York, NY, USA, 1993.

[18] Intel oneTBB. https://github.com/oneapi-src/oneTBB.
[19] Task�ow. https://task�ow.github.io.
[20] Tsung-Wei Huang, GuannanGuo, Chun-Xun Lin, andMartinWong. OpenTimer

2.0: A New Parallel Incremental Timing Analysis Engine. IEEE TCAD, 2020.
[21] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. GPU-accelerated Static Timing

Analysis. In IEEE/ACM ICCAD, pages 1–8, 2020.
[22] Chun-Xun Lin, Tsung-Wei Huang, GuannanGuo, andMartinWong. An E�cient

and Composable Parallel Task Programming Library. In IEEE HPEC, pages 1–7,
2019.

[23] Chun-Xun Lin, Tsung-Wei Huang, Guannan Guo, and Martin Wong. A Modern
C++ Parallel Task Programming Library. In ACMMultimedia Conference, pages
2285–2287, 2019.

[24] GuannanGuo, Tsung-Wei Huang, Chun-Xun Lin, andMartinWong. An E�cient
Critical Path Generation Algorithm Considering Extensive Path Constraints. In
ACM/IEEE DAC, pages 1–6, 2020.

https://www.darpa.mil/program/intelligent-design-of-electronic-assets
https://github.com/oneapi-src/oneTBB
https://taskflow.github.io

