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ABSTRACT

This paper introduces Task�ow to address the critical question

of “How can we make it easier to implement and deploy paral-

lel computer-aided design (CAD) algorithms on large heterogeneous

nodes with high performance and simultaneous high productivity?”

Parallelizing CAD is an extremely challenging job. Modern CAD

applications exhibit unique computational patterns and user re-

quirements that need very strategic decomposition to bene�t from

parallelism. Task�ow assists researchers and developers in the im-

plementation complexity of parallel algorithms by introducing a

new high-level programming model supported by an e�cient run-

time. By capitalizing on emerging parallelism comprising many-

core central processing units (CPUs), graphics processing units

(GPUs), and custom accelerators, Task�ow enables CAD to achieve

new performance and productivity milestones that were previ-

ously out of reach.
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1 INTRODUCTION

The ever-increasing design complexity in very-large-scale integra-

tion (VLSI) implementation will soon far exceed what many ex-

isting computer-aided design (CAD) tools are able to scale with

reasonable design time and e�ort (see Figure 1). A key fundamen-

tal challenge is that CAD must incorporate new parallel paradigms

comprising manycore central processing units (CPUs), graphics
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processing units (GPUs), and custom accelerators to allow more

e�cient design space exploration and optimization [1–3]. How-

ever, parallelizing CAD is an extremely challenging job. Modern

CAD applications exhibit unique computational patterns and user

requirements that need very strategic decomposition to bene�t

from parallelism [4, 5]. For example, timing analysis makes essen-

tial use of dynamic control �ow to implement various computa-

tional patterns acrossmillions to billions dependent tasks [6, 7]. It is

too di�cult to achieve transformational performance milestones

without the aid of high-level programming models and system

runtimes that target the unique parallelization challenges of CAD.

This type of system innovation has profound impacts on the CAD

community because it complements the current state-of-the-art by

assisting everyone to tackle the challenges of implementing and

deploying parallel CAD algorithms. Unfortunately, related system

research has received very little attention in the CAD community.
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Figure 1: Design cost versus design complexity [8].

Over the past years, we have invested a lot of research and

development (R&D) e�ort in existing programming systems from

the scienti�c computing community, including pthread, OpenMP

task [9], TPL [10], Cilk [11], StarPU [12], HPX [13], PaRSEC [14],

Kokkos [15], XKAAPI [16], and Charm++ [17]. However, almost all

existing programming systems fail to e�ectively parallelize CAD

because they were not fundamentally designed with CAD’s unique

computational patterns and user requirements in mind, which we

explain as follows:

• Complex control �ow. Optimization-driven workloads such

as logic synthesis, placement, and routing make essential use of
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dynamic control �ow to implement various combinatorial and an-

alytical algorithms that incorporate conditional, cyclic, and non-

deterministic computational patterns. Existing task program-

ming frameworks such as OpenMP [9], Kokkos [15], TBB [18],

and PaRSEC [14] closely rely on directed acyclic graph (DAG)

models to de�ne tasks and their dependencies. Users implement

control-�ow decisions outside the graph description via either

statically unrolling the graph across �xed-length iterations or

resorting to client-side decisions. This organization typically re-

sults in rather complicated procedure that lack end-to-end paral-

lelism.

• Complex taskdependencies.Analysis-driven workloads such

as timing and power analysis require computations to propagate

through the circuit network. Di�erent quantities (e.g., slew, ar-

rival time) are often dependent on each other, either logical re-

lation or physical net order, and are expensive to compute. The

resulting task graph in terms of encapsulated function calls and

task dependencies is typically very large. During incremental

analysis, data can arrive sparsely or densely and can run on

CPUs, GPUs, or more frequently a mix. Existing frameworks

such as task functors [15], templates [18], and C-styled point-

ers [12] are restrictive to �xed-memory layout. There are no

easy ways to describe up-front parallelism for an incremental

loop where the circuit graph structure and task dependencies

keep changing.

After years of research, we have arrived at a key conclusion:

While designing parallel CAD algorithms is non-trivial, what

makes parallelizing CAD an enormous challenge is the infrastruc-

ture work of “e�ciently expressing dependent tasks along with algo-

rithmic control �ow and scheduling them across heterogeneous com-

puting resources.”

2 TASKFLOW

We will present in this workshop Task�ow [19], a general-purpose

parallel task programming system, that we have been develop-

ing for years to streamline the building of parallel CAD tools. By

capitalizing on emerging parallelism comprising manycore CPUs,

GPUs, and custom accelerators, Task�ow enables CAD to achieve

new performance and productivity milestones that were previ-

ously out of reach. Speci�cally, we cover three topics:

• Programming model. We present the novel powerful hetero-

geneous programming model inspired by the parallelization

challenges of CAD such that developers can e�ciently express

a wide range of CAD workloads using minimal programming

e�ort.

• System runtime. We present the e�cient system runtime (i.e.,

task execution environment) to support our programming mod-

els with high performance. Our runtime solves many of the new

scheduling challenges arising out of our models and optimize

the system performance across latency, energy e�ciency, and

throughput.

• Application. We present two applications, static timing analy-

sis and detailed placement, to which we have applied Task�ow.

We show that when Task�ow is leveraged to implement par-

allel CAD algorithms, many implementation challenges can be

largely mitigated, and new parallel CAD algorithms and frame-

works can proliferate.

Task�ow is open-source at [19], including step-by-step tutori-

als, application programming interface (API) reference, and bench-

marks. We are actively developing and maintaining Task�ow.

Since its �rst release in 2018, we have accumulatedmore than 500K

downloads and helped many research and academic projects (in-

cluding our timing research [20, 21]) improve their performance

through parallelism. We have demonstrated the promising perfor-

mance of Task�ow in various CAD applications and scienti�c com-

puting workloads [7, 22–24].
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