
A Digital Flow for Asynchronous VLSI Systems:
Status Update

Udit Agarwal∗, Samira Ataei†, Jiayuan He∗, Wenmian Hua†, Yi-Shan Lu∗, Sepideh Maleki∗, Yihang Yang†,
Keshav Pingali∗, and Rajit Manohar†

∗University of Texas at Austin
{udit,hejy,yishanlu,smaleki,pingali}@cs.utexas.edu

†Yale University
{samira.ataei,wenmian.hua,yihang.yang,rajit.manohar}@yale.edu

Abstract—We are developing an open-source EDA flow for
asynchronous logic. Key parts of the flow are implemented
using the Galois system for parallelization to reduce run-time
requirements. We report on the current state of this flow, and
some of the issues that we are exploring in order to improve the
overall quality of results and expand the class of circuits that
can be implemented using the flow.

I. INTRODUCTION

Asynchronous digital circuits provide a method for imple-
menting digital computation without the need for a global
clock signal to synchronize all operations. The absence of a
global clock is a significant enough change that conventional
synchronous design automation tools are insufficient to design
correct asynchronous circuits without major manual effort.

To address this challenge, we have been building an open-
source design automation flow for asynchronous circuits. The
flow includes an open-source design hardware description
language dubbed “ACT”, which permits the specification of
asynchronous circuits at multiple levels of abstraction span-
ning behavioral descriptions and transistor-level descriptions.
The ACT language supports different asynchronous circuit
families and timing constraints in a single framework.

We describe the progress we have made over the past year
in developing design automation support for asynchronous cir-
cuits. We focus on the “gates to GDS2” part of the flow, where
a gate-level netlist has to be translated into physical geometry
prior to tape-out. The modular nature of the asynchronous
design flow makes it amenable to parallelization. Module-level
parallelism is easy to achieve, and the higher complexity of
some of the design automation steps (relative to synchronous
design) requires parallelism to speed up the design process.
We are leveraging the Galois framework as a way to simplify
the development of highly parallel EDA tools.

II. CURRENT DESIGN FLOW FOR ASYNCHRONOUS
CIRCUITS

The flow we are creating includes a design language called
ACT (for asynchronous circuit toolkit). This is a hierarchical
design language that includes communication channels as first-
class objects. By using a single language for multiple levels of
abstraction in design, we preserve the relationships between

Design

Expanded 
design

Technology 
mapping

New cell 
generation

Characterizer

Placement

Asynchronous static 
timing engine

Routing

Floorplan

Layout 
finishing

.lib 

.act 

.spice 

.lef 

.rect
.act 

.act .def 

.def 

.gds

Layout editor

.lef 

.gds

.v 

.v 

.def 

.spef .act 

translation to 
proprietary 
commands

.def 

cell layout

Fig. 1: Overview of the digital design flow for asynchronous
circuits that is under development. Gray boxes denote existing
tools that we leverage. Orange boxes are the ones where we
implement parallel algorithms to improve run-time.

different design phases throughout the flow. A summary of
the flow we are developing is shown in Figure 1. We now
highlight some of the non-standard aspects of our flow.

A. Technology mapping and gates

After elaboration, the design consists of a hierarchical
description of the asynchronous circuit with the leaves of
the description being user-specified gates implemented with
pull-up and pull-down networks. Since different asynchronous
circuit families require different standard gates, our flow is
agnostic to the underlying circuit family used to implement
the circuit. Instead, we permit arbitrary circuits to be specified
in the ACT language, with the user providing a cell library for
implementation.

Given the cell library, we have developed tools to map
the design to the specified cell library. When the mapping



fails, a new cell is automatically created. We have also
developed preliminary tools for cell creation—including layout
of the cell, and characterization for power and performance to
generate an updated .lib file. Some manual effort is currently
needed to ensure that the generated cell layout is DRC/LVS
clean, and reducing this effort is ongoing work.

B. Asynchronous static timing analysis

Given a design mapped to a collection of pre-characterized
gates, we have developed an asynchronous static timing
analysis called Cyclone [5], the first comprehensive timing
and power analysis engine capable of handling complete
asynchronous circuits. Cyclone, adopting the approach in [6],
calculates exact results for asynchronous circuits with max-
causality gates, and conservative approximations in all other
cases. Cyclone is parallelized using the Galois framework to
shorten its turn-around time. Our preliminary experimental
results show a speedup in the range of 3× to 19× for large
designs by using the Galois framework. We are currently
extending the types of asynchronous circuits supported by
Cyclone, and further improving the speedup and accuracy of
asynchronous timing analysis.

C. Layout generation

We have created tools to convert the ACT design into
the industry-standard .lef/.def formats in preparation for
layout generation.

1) Floorplanning: We automate floorplanning for larger de-
signs with a hierarchical min-cut approach. Both layout space
and the design are simultaneously partitioned while keeping
the ratio of cell area to available space constant. BiPart, a
deterministic multi-level min-cut hypergraph partitioner par-
allelized using the Galois framework, is used for partitioning
designs. Internally, BiPart uses compressed sparse row format
to represent levels of hypergraphs for better locality; this gives
2× speedup compared to using naive graph representations.

BiPart also lowers the cut size by 15% by introducing more
scheduling policies for partitioning a hypergraph. Scheduling
policies affect what nodes are merged during the coarsening
process in multi-level min-cut partitioning.

2) Placement and routing: For asynchronous circuit layout
automation, we propose a gridded cell placement flow, Dali,
which allows the cell height and cell width to be any integer
multiple of two grid values [8]. The freedom of cell heights
can potentially lead to a more compact layout, smaller wire-
length, and thus better performance. Dali generates design-rule
clean placement. Our experimental results also show that the
gridded cell placement approach reduces area by 15% without
impacting the routability of the design.

The gridded cell placement flow consists of four stages,
which are designed to optimize wire-length cost and satisfy
various physical constraints. (a) Global placement optimizes
wire-length cost while keeping the cell density less than a
given upper limit. (b) Forward-backward legalization removes
overlapping among gridded cells, and only makes local cell

displacement to avoid large perturbation. (c) N/P-well legal-
ization assigns cells to placement sub-regions, and performs
cell clustering for N/P-well generation and well tap cell
creation in each sub-region. (d) Power grid design leverages
the organized structure of cell clusters to generate a power
mesh and connects VDD and GND pins in each cell to their
closest power-lines. We are working on detailed placement
techniques for gridded cells to further improve the wire-length
cost, and integration with Cyclone to make the placement flow
timing-driven.

We use commercial routers to route the placed design.
However, our approach is agnostic to the choice of detailed
router. We plan to integrate SPRoute [4], a global router based
on FastRoute [7] and parallelized using the Galois framework,
into the layout automation tool chain. We also plan to make
routing tools timing-driven by utilizing the feedback from
Cyclone.

D. AMC: Asynchronous memory compiler

Almost every digital ASIC and Soc design requires em-
bedded memory, and asynchronous designs are no different.
Commercial memory compilers provide only synchronous
memories and to address the memory need of asynchronous
designs we have built AMC, an asynchronous memory com-
piler [1, 3]. AMC generates asynchronous pipelined multi-
bank SRAM modules with quasi delay-insensitive control and
bundled-data datapath. The description of SRAM architecture
generated by AMC and the compiler usage can be find in
[1, 2]. Recently we have added two new features to AMC:
(i) power-gating and (ii) write-masking. In addition, AMC
has been successfully ported to a 12nm fabricable FinFET
technology using the foundry-provided 6T SRAM cell.

The first new feature is power-gating option which allows to
turn off the memory when it is not being used. A CPU cache
can be dormant for a long time and power-gating helps to mini-
mize the leakage current of memory by temporarily switching
the cache off when it is not required. In addition, leakage
power dissipation grows in scaled technology nodes and to
address the leakage power of memory, it is highly desirable
to provide the power-gating option for memory. Power-gating
provides two operation modes for generated asynchronous
SRAMs: SLEEP or low power mode and WAKE-UP or active
mode. The power-gating option of AMC allows to switch
between these two modes to maximize the power savings with
minimum impact on performance. Shutting down the SRAM
power is scheduled through “SLEEP” control signal. During
SLEEP mode, it is necessary to isolate the outputs of memory
in order to avoid floating outputs driving inputs of active
blocks. Once all output acknowledge signals are correctly
isolated, memory goes to a low power mode. Lowering the
SLEEP signal, wakes the memory up and returns it to active
mode.

We used a coarse grain power gating approach with low
area penalty and switch the memory macro power by a
collection PMOS switches that gate the VDD supply. Header
PMOS switches are a more appropriate choice for memory



VDD

VVDD

SRAM 
block

VDD

VVDD

∆TSLEEP ∆T…

… …

…

(a) (b)

Fig. 2: (a) ring-style power-gating and (b) daisy-chain SLEEP
distribution.

block power-gating compared to footer NMOS switches that
gates GND. Many SoC and ASIC designs use multiple power
supplies with level-shifters and since level shifters are typically
designed with a common ground, switching the ground can be
a problem in multi-voltage chips. The AMC power-gating is
implemented in a ring style network. With a ring style network,
memory macro is encapsulated with a ring of PMOS switches
that connect VDD to a virtual VDD (VVDD) as shown in
figure 2(a). All the switches are added outside the memory
macro and memorys VDD power is connected to VVDD.

When memory is reconnected to power supply there is an
in-rush current that must be carefully controlled in order to
avoid excessive IR drop, spikes on the supply voltage and
possible content corruption of other blocks in the chip. To
control this in-rush current the control signal (SLEEP) to the
PMOS switches is daisy-chained as shown in figure 2(b).
The SLEEP signal is connected to a set of switches and
then buffered with always-on buffers and send to next set of
switches. Daisy chaining the SLEEP signal turns on the sleep
transistors gradually and the current increases slowly with the
number of turned on transistors to control in-rush current.
However, it takes some time from the assertion of activate
signal to power up the memory macro. For this reason, an
acknowledge signal indicating the memory is powered-up is
also provided. This acknowledge signal is the inverted SLEEP
signal from the final buffer stage and indicates that memory is
completely powered up and memory accesses can be resumed.

The second new feature is write-masking. Write-masking
determines the data bits to write during the memory write
mode. When write-masking is enabled, data on the input
data bus (DIN[n:0]) are written to the memory, as specified
by the write mask bus (WM[n:0]). Enable pin of all write
drivers are gated with WM pin, making each bit individually
selectable. When the write mask pin k is high (WM[k] =1),
the corresponding data bit (DIN[k]) is selected, and its data is
written to the memory location specified with decoded address
bits. If the write mask pin is low, no data is written for that
bit and memory cell retains its previous value. To reduce the
area overhead when write-masking is enabled, write mask bus
is routed over input data bus on a higher metal layer.

E. Overall status

We have used the current version of the flow to successfully
tape-out a 65nm asynchronous microprocessor. The commer-
cial tools used for the design were: (a) a detailed router;
(b) DRC/LVS/extraction for sign-off; (c) and commercial tools
for pad frame assembly and routing. We are developing tools
to replace (c) with open-source tools, and our plan is to use
existing open-source detailed router projects to replace the
commercial detailed router.

III. CONCLUSION

We have presented the current state of a design automation
flow for asynchronous circuits. The flow supports modular
design, and many of our core tools are written using the Galois
framework to support parallel execution on multi-core systems.
We believe that this tool chain will promote chip design with
clean abstractions and fast turn-around times.

Our two major efforts for the upcoming year are: (a) to
combine our efforts on the asynchronous memory compiler
with the OpenRAM project, to create a single unified memory
compiler that supports both synchronous and asynchronous
memories; (b) to generalize our static timing analysis engine
to more classes of asynchronous circuits; and (c) to make all
the key steps of our flow truly timing driven.

REFERENCES

[1] S. Ataei and R. Manohar. Amc: An asynchronous
memory compiler. IEEE International Symposium on
Asynchronous Circuits and Systems (ASYNC), pages 1–8,
2019.

[2] S. Ataei and R. Manohar. AMC: Asynchronous memory
compiler. http://avlsi.csl.yale.edu/act/doku.php?id=amc:
start, 2019.

[3] S. Ataei and R. Manohar. A unified memory compiler
for synchronous and asynchronous circuits. Workshop on
Open-Source EDA Technology (WOSET), pages 1–4, 2019.

[4] J. He, M. Burtscher, R. Manohar, and K. Pingali. Sproute:
A scalable parallel negotiation-based global router. In In-
ternational Conference on Computer-Aided Design, Nov.
2019.

[5] W. Hua, Y.-S. Lu, K. Pingali, and R. Manohar. Cyclone: A
static timing and power engine for asynchronous circuits.
In International Symposium on Asynchronous Circuits and
Systems (ASYNC), May 2020.

[6] W. Hua and R. Manohar. Exact timing analysis for asyn-
chronous systems. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 37(1):203–216,
2018.

[7] Y. Xu, Y. Zhang, and C. C. N. Chu. Fastroute 4.0: Global
router with efficient via minimization. 2009 Asia and
South Pacific Design Automation Conference, pages 576–
581, 2009.

[8] Y. Yang, J. He, and R. Manohar. Dali: A gridded cell
placement flow. In International Conference on Computer-
Aided Design (ICCAD), Nov 2020.


