
Cocoon: An Open-Source Infrastructure for 
Integrated EDA with Interoperability and 

Interactivity 

Jiaxi Zhang1, Tuo Dai1, Zhengzheng Ma1,2, Yibo Lin1, Guojie Luo1,2

1Center for Energy-Efficient Computing and Applications, Peking University, Beijing, China

2Peng Cheng Laboratory, Shenzhen, China 

Email: {zhangjiaxi, gluo}@pku.edu.cn



Background and Motivation

[1] T. Ajayi, et al., “Toward an open-source digital flow: First learnings from the OpenROAD project,” DAC 2019.

[2] J. Jung, et al., “DATC RDF: Robust design flow database,” ICCAD 2017.

[3] Edalize: https://github.com/olofk/edalize

[4] Hammer: https://github.com/ucb-bar/hammer

2

 Background

– Modern IC design requires the joint efforts of EDA tool developers, system integrators and IC designers

– “The EDA companies had grown from a lot of acquisitions so that’s what they had for sale: good point 
tools that were poorly integrated.” -- Paul McLellan in EDAgraffiti

 Motivation

– Over-optimized point tools + poorly integrated flow ⇒Moderately optimized customized tools + easy-
to-customized integrated flow

– The existing open source flows still need extended development to be available

- OpenRoad Flow [1], DATC Robust Design Flow [2]

– Similar attempts

- EDAlize [3], Hammer [4]

https://github.com/olofk/edalize
https://github.com/ucb-bar/hammer


Integrated EDA

[5] Barnes T J, Harrison D, Newton A R, et al. Electronic CAD frameworks[M]. Springer Science & Business Media, 2012.

3

 What is Integrated EDA?

– Expanded from Electronic CAD Framework [5]

– A system composed of EDA point tools, designs, and interfaces

– Users: EDA researchers, tool developers, and IC designers

 Ideal Characteristics of Integrated EDA

– Interoperability (Within the EDA flow)

- The ability of two or more point tools to exchange design information

- Support the mixing of tools from different vendors of open source community

– Interactivity (Beyond the EDA flow)

- A unified user interface, supporting users to flexibly select and deploy different point tools

- A unified and abstract programming interface, supporting automated design methodology research and flow tuning



Integrated EDA4

 Possible Solutions of Integrated EDA

– Open standards: Liberty, LEF/DEF, SDC, etc.

– Cross tool API: Higher level of API abstraction than TCL

– Steps Abstraction: logic synthesis, place, cts, route, etc. Legality check are need

– EDA brokers: Tools or tool parameters recommendation (Human experts or AI)

– Model-based DSL: Domain specific language for design flows

Approaches in Inter-
connected Cloud

Corresponding approaches 
in Integrated EDA

Available in 
existing flows?

Open Standards/Protocols Open Standards YES

Cross-platform APIs Cross-tool APIs NO

Layers Abstraction Steps Abstraction YES

Cloud Brokers/Agents EDA Brokers/Agents NO

Model-based DSL Flow-based DSL NO



Cocoon: Architecture

Repo: https://github.com/pku-dasys/cocoon

5

 Key Features

– Cross-tool APIs

- Applications layer, interfaces layer, data layer

- Checkpoint design (including history running 
scripts)

- Fast designs and reports extraction

– EDA Brokers

- Customized flow and Legality Check 
Mechanism

- Learning-based flow tuning and optimization



Cocoon: Customized Flow6

 Customized Flow Definition

– Branching flow

- Scenarios1: Compare the better one and do next steps

- Scenarios2: Partition the design and do each part parallel

– Iterating flow

- Scenarios1: Bad QoR

- Scenarios2: Back annotation (physical-aware high level 
synthesis and logic synthesis)



Cocoon: Customized Flow7

 Flow Tuning

– EDA tools provide numerous options and parameters that can drastically impact design quality

– Design space exploration

– Method

- Search strategies (SA, GA)

- Parallel computing

- Learning-based methods



Implementation and Evaluation8

 Implementation

– Python 3

– Applications layer are implemented as classes

- Each class will wrap the implementation of a tool, including member functions like parameters setting and scripts 
generation

– Data layer is implemented as a database with a fixed directory

– Interfaces layer are implemented as global functions

 Evaluation

– Branching flow

- Demo code

– Flow tuning

- Baseline method: Bayesian Optimization for black-box optimization



Future work9

 Beautify the UI for users

 Integrate more open source tools

 Implement legality check

 Cloud Infrastructure

– Distributed checkpoint design

– Computation graph scheduling of applications


