

Cocoon: An Open-Source Infrastructure for Integrated EDA with Interoperability and Interactivity

Jiaxi Zhang¹, Tuo Dai¹, Zhengzheng Ma^{1,2}, Yibo Lin¹, Guojie Luo^{1,2}

¹Center for Energy-Efficient Computing and Applications, Peking University, Beijing, China

²Peng Cheng Laboratory, Shenzhen, China

Email: {zhangjiaxi, gluo}@pku.edu.cn

Background and Motivation

- Background
 - Modern IC design requires the joint efforts of EDA tool developers, system integrators and IC designers
 - "The EDA companies had grown from a lot of acquisitions so that's what they had for sale: good point tools that were poorly integrated." -- Paul McLellan in EDAgraffiti
- Motivation
 - Over-optimized point tools + poorly integrated flow ⇒ Moderately optimized customized tools + easyto-customized integrated flow
 - The existing open source flows still need extended development to be available
 - OpenRoad Flow [1], DATC Robust Design Flow [2]
 - Similar attempts
 - EDAlize [3], Hammer [4]

[1] T. Ajayi, et al., "Toward an open-source digital flow: First learnings from the OpenROAD project," DAC 2019.

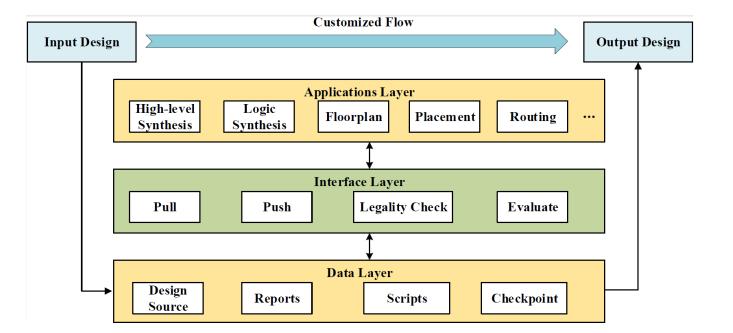
[2] J. Jung, et al., "DATC RDF: Robust design flow database," ICCAD 2017.

[3] Edalize: <u>https://github.com/olofk/edalize</u>

[4] Hammer: <u>https://github.com/ucb-bar/hammer</u>

Integrated EDA

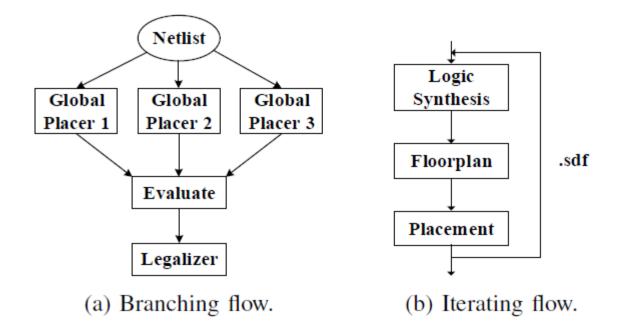
- What is Integrated EDA?
 - Expanded from Electronic CAD Framework [5]
 - A system composed of EDA point tools, designs, and interfaces
 - Users: EDA researchers, tool developers, and IC designers
- Ideal Characteristics of Integrated EDA
 - Interoperability (Within the EDA flow)
 - The ability of two or more point tools to exchange design information
 - Support the mixing of tools from different vendors of open source community
 - Interactivity (Beyond the EDA flow)
 - A unified user interface, supporting users to flexibly select and deploy different point tools
 - A unified and abstract programming interface, supporting automated design methodology research and flow tuning


Integrated EDA

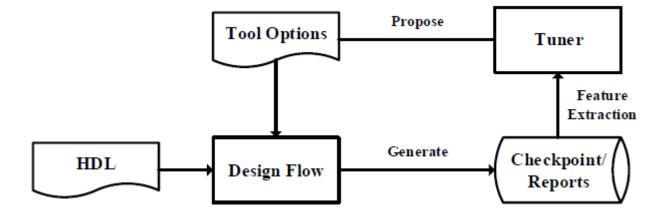
- Possible Solutions of Integrated EDA
 - Open standards: Liberty, LEF/DEF, SDC, etc.
 - Cross tool API: Higher level of API abstraction than TCL
 - Steps Abstraction: logic synthesis, place, cts, route, etc. Legality check are need
 - EDA brokers: Tools or tool parameters recommendation (Human experts or AI)
 - Model-based DSL: Domain specific language for design flows

Approaches in Inter- connected Cloud	Corresponding approaches in Integrated EDA	Available in existing flows?
Open Standards/Protocols	Open Standards	YES
Cross-platform APIs	Cross-tool APIs	NO
Layers Abstraction	Steps Abstraction	YES
Cloud Brokers/Agents	EDA Brokers/Agents	NO
Model-based DSL	Flow-based DSL	NO

Cocoon: Architecture


- Key Features
 - Cross-tool APIs
 - Applications layer, interfaces layer, data layer
 - Checkpoint design (including history running scripts)
 - Fast designs and reports extraction
 - EDA Brokers
 - Customized flow and Legality Check Mechanism
 - Learning-based flow tuning and optimization

Cocoon: Customized Flow


- Customized Flow Definition
 - Branching flow
 - Scenarios1: Compare the better one and do next steps
 - Scenarios2: Partition the design and do each part parallel
 - Iterating flow
 - Scenarios1: Bad QoR
 - Scenarios2: Back annotation (physical-aware high level synthesis and logic synthesis)

Cocoon: Customized Flow

- Flow Tuning
 - EDA tools provide numerous options and parameters that can drastically impact design quality
 - Design space exploration
 - Method
 - Search strategies (SA, GA)
 - Parallel computing
 - Learning-based methods

Implementation and Evaluation

- Implementation
 - Python 3
 - Applications layer are implemented as classes
 - Each class will wrap the implementation of a tool, including member functions like parameters setting and scripts generation
 def flow(self):
 - Data layer is implemented as a database with a fixed directory
 - Interfaces layer are implemented as global functions
- Evaluation
 - Branching flow
 - Demo code
 - Flow tuning
 - Baseline method: Bayesian Optimization for black-box optimization

app_synth = [] app_synth.append(("YosysSynth", "to_synth", "Timing")) app_synth.append(("GenusSynth", "to_synth", "Timing")) self.apps.append(app_synth) app_floorplan = [("InnovusFloorplan", "to_floorplan")] self.apps.append(app_floorplan) self.params_fp.append(("r","1.0 0.7 0.0 0.0 0.0 0.0 0.0")) app_pdn = [("InnovusPDN", "to_pdn")] self.apps.append(app_pdn) app_place = [("InnovusPlace", "to_place")] self.apps.append(app_place) app_cts = [("InnovusCTS", "to_cts")] self.apps.append(app_cts) app_route = [("InnovusRoute", "to_route")]

self.apps.append(app_route)

10

11

12

13

14

15

16

17 18

19

20

22

Future work

- Beautify the UI for users
- Integrate more open source tools
- Implement legality check
- Cloud Infrastructure
 - Distributed checkpoint design
 - Computation graph scheduling of applications