
Cocoon: An Open-Source Infrastructure for
Integrated EDA with Interoperability and

Interactivity
Jiaxi Zhang1,∗, Tuo Dai1, Zhengzheng Ma1,2, Yibo Lin1 and Guojie Luo1,2,†

1Center for Energy-Efficient Computing and Applications, Peking University
2Peng Cheng Laboratory

Email: ∗zhangjiaxi@pku.edu.cn, †gluo@pku.edu.cn

Abstract—The increasing size and complexity of integrated
circuit (IC) design introduce huge design cost and put forward
higher requirements for EDA tools. Improving the quality and
efficiency of chip design requires the efforts of both EDA workers
and IC designers. In this paper, we first put forward the concept
of Integrated EDA, a system composed of EDA points tools,
designs and interfaces. And we point out the key features of
integrated EDA and the possible solutions. Then we propose
Cocoon, an open-source infrastructure for integrated EDA with
interoperability and interactivity. It contains a set of cross-tool
interfaces and plays the role of EDA agent that can help IC
designers choose EDA point tools to assemble a legal design flow
and to produce ICs with a higher quality of results (QoR). At
last, we implement two demos using Cocoon to prove that such
infrastructure is feasible and flexible for integrated EDA.

I. INTRODUCTION

The increasing size and complexity of integrated circuit
(IC) design introduce huge design cost and increase time
to market. Higher requirements have been put forward to
electronic design automation (EDA) tools. EDA researchers
and vendors have proposed many methods to improve the
quality and reduce the running time of EDA tools, thereby
further helping chips designers to decrease the design cost.
However, as the complexity of the chip architecture increases,
it is not enough to rely solely on EDA tool developers. This
requires the joint efforts of EDA tool developers, EDA system
integrators and the IC designers.

The concept of electronic CAD framework has been pro-
posed to define all of the underlying facilities provided to
the CAD tool developers, the CAD system integrators, and
the IC designers [1]. The primary goal of a CAD frame-
work is to reduce the time and cost required to develop or
modify a CAD system such that it meets the needs of its
users. But it is not trivial to implement such a framework.
In recent years, the open-source EDA community still have
made attempts and great efforts to it. OpenRoad flow [2]
developed an open-source toolchain covering from RTL to
GDSII phase of system-on-chip design. DATC Robust Design
Flow [3] constructed a database for design benchmarks and
point tool libraries and provided an open-source design flow
from logic synthesis to detailed routing. Such open-source
toolchains provide IC designers with the possibility to modify

the customized EDA flows to get higher design quality of
results (QoR).

Due to a tool can not handle all designs to produce the best
QoR, IC designers can customize the design flow by choosing
different tools to get higher QoR for their design. Thus, IC
designers need to be very familiar with every step in EDA
toolchain and detailed scripts of each tool before they want
to replace one step with another point tools to customize a
design flow. Poor interoperability and interactivity hinder the
integration and customization of EDA tools. Interoperability is
the premise of CAD-IP reuse [4], and interactivity supports the
toolchain customization for IC designers without expertise in
EDA algorithms. Some EDA frameworks have been proposed
to solve such problems. Edalize [5] provides a python library
for interacting with EDA tools. It can create projects for sup-
ported tools and run them in batch or GUI mode. Hammer [6]
means to enable re-use and portability of EDA tools between
technologies. It provides a Python backend and exposes a set
of APIs that are typical of modern VLSI flows.

In this paper, we expand the concept of electronic CAD
framework to integrated EDA. The goal of integrated EDA
is that users can easily call EDA point tools to assemble
customized EDA flows as well as generate design layout
without a deep understanding of all EDA tools. Interoperability
and interactivity are two key features to achieve the above
objectives. The major technical contributions of our work are
threefold:

• We review the concept of Electronic CAD framework
and expand it to integrated EDA. We point out the key
features of integrated EDA and the possible solutions.
(Section II).

• We propose Cocoon1, an infrastructure enhancing the
interoperability and interactivity for integrated EDA. With
the help of interface definition, Cocoon can represent
customizable and tunable EDA flows. (Section III).

• We implement two demos using Cocoon to prove that
such infrastructure is feasible and flexible for integrated
EDA. (Section IV).

1https://github.com/pku-dasys/cocoon

https://github.com/pku-dasys/cocoon


TABLE I: Interoperability and interactivity approaches in
inter-connected cloud and their counterparts in integrated
EDA.

Approaches in
Inter-Connected Cloud

Corresponding
approaches in

Integrated EDA

Available
in existing

flows?
Open Standards/Protocols Open Standards YES

Cross-platform APIs Cross-tool APIs NO
Layers Abstraction Steps Abstraction YES

Cloud Brokers/Agents EDA Brokers/Agents NO
Model-based Model-based NO

II. INTEGRATED EDA

In this section, we first define integrated EDA and point out
the key features. Then we show some possible solutions bor-
rowed from other fields that might enhance the interoperability
and interactivity of integrated EDA.

A. What is Integrated EDA?

Integrated EDA is a system composed of EDA point tools,
designs, and interfaces. It is more than a library of EDA point
tools. The users of integrated EDA include three groups of
people, EDA researchers, tool developers, and IC designers,
each of whom have their own needs and particular emphasis.
For EDA researchers and tool developers, they can quickly
verify whether their algorithm or tool is useful in the end-to-
end EDA flow. They can also create new design methodology
and do cross-stage optimization. For IC designers, they can
easily customize EDA flow without knowing details of EDA
algorithms to get higher design QoRs.

Interoperability and interactivity are two key features of
integrated EDA. In EDA context, Interoperability can be
defined as the ability of two or more toolchains to exchange
point tool and to use the design file that has been exchanged.
Interactivity can be defined as the flexibility that user can
replace and deploy point tool and without knowing the imple-
mentation details. The former one guarantees the interchange
of point tools, while the latter feature enables cross-step
optimization and flow tuning for users.

B. Possible Solutions

The problem of interoperability and interactivity will also
appear in other fields. In the inter-connected cloud, the in-
teroperability and interactivity can be defined as the ability
to seamlessly deploy, migrate, and manage application work-
loads across heterogeneous hardware and software resources
provided by multiple datacenter cloud providers. Different re-
searchers have suggested various approaches to implement in-
teroperability in inter-connected cloud [7], and inter-connected
EDA can draw on the experience of these approaches. Table I
summarizes the interoperability approaches in inter-connected
cloud and corresponding approaches in integrated EDA. The
last column shows whether these approaches currently exist in
the EDA design flow.

Open standards are design exchange formats in chip design,
and there have been several open standards in EDA tools.
Liberty format defines a standard cell library. LEF format

contains physical and technology information of standard cells.
DEF format describes initial floorplan. SDC format includes
design constraints such as clock period, driver information of
each input port and load capacitance of each output.

Cross-tool APIs are the interfaces to easily call different
point tools without knowing how to write the running scripts.
The scripts of most EDA tools are based on Tcl. But Tcl
does not support interoperability of different tools very well
because it is tightly coupled with the tool. We need a higher-
level abstraction to implement cross-tool APIs.

Steps abstraction are the process steps in the EDA design
flow. The abstractions now are stable and adopted by industry
and academia. The main abstractions include logic synthesis,
floorplan, power plan, global placement, detailed placement,
clock tree synthesis, globe routing, detail routing, design rule
check, LVS, static timing analysis and parasitic extraction,
et.al. But it’s not enough if we only have these point tools. For
those who are not familiar with EDA stages like IC designers,
we still need some mechanism to check whether the order in
which the tools are used is legal.

EDA brokers are individuals or enterprises that act as in-
termediaries between users and providers of EDA tools. They
recommend the most suitable EDA point tools for designers.
And they provide users with a simple API and UI, allowing
users to work seamlessly with different point tools as if using
a single tool. An EDA agent can be a software that helps
choose point tools from different EDA vendors and even the
open-source EDA community.

Model-based approaches request developers to model the
functionality of the system. A model is usually specific with
some model notations or a domain-specific language. This kind
of method has not been applied to EDA.

In this paper, we focus on the cross-tool APIs and EDA
agents to enhance the interoperability and interactivity of inter-
connected EDA.

III. COCOON

In this section, we first give the architecture and abstraction
layers of Cocoon. Then we show how Cocoon supports
customized flow definition and flow tuning.

A. Overall Architecture

Fig. 1 summarizes the Cocoon architecture. Cocoon has
three layers of abstraction, applications (tools) layer, data layer
and interfaces layer.

Applications layer contains all EDA stages in the entire flow,
including but not limited to high-level synthesis, logic synthe-
sis, floorplan, power plan, placement, routing, et.al. With the
development of chip design and EDA, more applications may
appear. But it does not affect the abstraction of the application
layer; we can add or delete applications to this layer. For
example, placement application can be divided into global
placement, legalization and detailed placement. We can add
these three sub-stages to the application layer. Each application
is a set of EDA tools from the open-source community or EDA
vendors. Tools in Cocoon will provide options and parameters,



Interface Layer

Pull Push EvaluateLegality Check

Input Design Output Design

Customized Flow

Applications Layer

Logic 

Synthesis
RoutingPlacementFloorplan …

High-level 

Synthesis

Data Layer

Design 

Source
Reports Scripts Checkpoint

Fig. 1: Cocoon Architecture.

and these options or parameters can drastically impact design
quality.

Data layer contains all information about the design, includ-
ing design sources, reports, running scripts and checkpoints.
Design sources include hardware design languages, standard
cell library ∗.lib, physical and technology information of
standard cells ∗.lef and design constraints ∗.sdc. Reports are
the output files of EDA tools, including report files such as
timing, power and running logs. Scripts are the files to control
the execution of EDA tools, including Tcl scripts, makefiles
or scripts with other formats.

The checkpoint is critical in the data layer and is different
from other frameworks. In addition to the information included
in traditional checkpoints like netlists, physical data, timing
information, design constraints, etc., checkpoints in Cocoon
also contains executed tools and tool parameters. Such check-
point design makes it easier for applications to check whether
the current input checkpoint is legal. And it can memorize
the used tool for results reproduction without spending time
choosing tools. The checkpoint can also be easily migrated
to other design flow. For example, if a IC designer has tried
tool A, B, C for global placement and he figures out that tool
B produced layout with higher design quality for module X
after finishing the latter design stages, he can use tool B for
global placement in the selection of subsequent EDA tools.

B. Interface Layer

Interface layer is a bridge connecting data layer and appli-
cations layer. It is also a key point for supporting interoper-
ability and interactivity. Pull and push are basic methods for
applications to read or write data.

Evaluation operator pulls the checkpoints, compare the
results and can push the checkpoint with higher QoR to
other applications. Users can prune the bad design in early
stage and choose the tools with better design quality via
evaluation method. Evaluation operator can be implemented by
pulling the reports and estimating the design quality by reports.
Users can define their own evaluation method to realize such
functionality. E.Ustun [8] use machine learning to accelerate
the design tuning phase by pruning the bad design in early
stage.

Legality check is defined to check whether the input check-
point of the application is legal. This mechanism can help

Global

Placer 1

Netlist

Evaluate

Global

Placer 2

Global

Placer 3

Legalizer

(a) Branching flow.

Logic 

Synthesis

Floorplan

Placement

.sdf

(b) Iterating flow.

Fig. 2: Customized flow definition.

Tool Options Tuner

Checkpoint/

Reports
Design Flow

Propose

Generate

Feature 

Extraction

HDL 

Fig. 3: A typical tuning process.

avoid the problem that a customized flow fails due to the
incorrect application calls. For example, if in a customized
flow, user calls a routing tool after logic synthesis and omits
the placement, then this flow is illegal. Cocoon can save the
applications that correctly executed, and give an alternative
application.

C. Customized Flow Definition

With the above layers and functionalities, Cocoon can
flexibly support the definition of various forms of design flows,
such as branching flow and iterating flow. These forms of
design flows can help users choose better quality tools and
research on new design methodologies without writing too
many tool scripts.

1) Branching flow: Suppose the user wants to use yosys
with different parameters or yosys and genus for logic synthe-
sis at the same time, and choose a better result to perform the
subsequent steps. This flow has branches. Fig. 2a gives the
schematic of the branching example. Assuming that we can
have 3 global placers to choose from, Cocoon can evaluate the
checkpoint after finishing the global placement, and choose a
better design for subsequent legalization and detail placement.
The evaluated function can be implemented by reading the
reports or developing learning-based method.

2) Iterating flow: The most common scenario of iteration
flow is that if the timing is not satisfied and users need to
rerun the entire flow with different tool or tool parameters.
Back annotation is another example. Given another example,
if a user want to use physical-aware logic synthesis [9] to
improve the design quality, he needs to run the placement
and routing applications first, and the feed the result back to
the logic synthesis application. Fig. 2b gives the schematic of
back annotation. Logic synthesis tool read the .sdf generated
by placer to guide the re-synthesis to get higher QoR.



D. Flow Tuning

EDA tools provide numerous options and parameters that
can drastically impact design quality. These parameters create
an enormous and complex design space, and it’s impossible
to try all the design point to find the optimal solution. Several
design space exploration methods like intelligent search strate-
gies, parallel computing and learning-based method [10] can
help solve such problem. Due to interactive layer abstraction,
design space exploration methods can be easily imported to
Cocoon. Cocoon can not only tune the tool parameters of
flow, but also tune which tool to use in the customized flow.
Figure 3 shows how cocoon support the flow tuning. The tuner
pulls the features extracted from the checkpoint or reports and
propose tool options to the design flow. Design flow adopts
the tool options, executes and generates new design checkpoint
and reports. Such process finishes until the design meets the
performance requirements or reaches the maximum number of
iterations.

IV. IMPLEMENTATION AND EVALUATION

This section presents a preliminary implementation of Co-
coon and gives two demos to show that Cocoon is feasible
and flexible for integrated EDA.

A. Implementation

We use Python 3 to implement Cocoon. The application
layer in Cocoon is implemented as a class. Each class instance
will wrap the implementation of a tool, including the member
functions like parameters setting and scripts generation. The
data layer in Cocoon is implemented as a database with a fixed
directory. Interface layer are implemented as global functions.
Users need to modify design class to specify the design source,
and then write their customized flow class, with specifying the
tool name and parameters as well as execution order. Cocoon
will analyze the customized design flow automatically, and
then assert legality check and run the flow.

B. Evaluation

We gives two demos to demonstrate that Cocoon can
support customized flow definition and flow tuning.

1) Branching flow: Figure 4 shows the code of a branching
flow. Cocoon first push the HDL to Genus and Yosys and
then pull the checkpoint after the synthesis. Then cocoon
call evaluate method to compare the results and push the
checkpoint with better estimated results to Innovus to do the
floorplan and placement. Also parameters in every application
step can be define in the flow in the same time as shown in
line 10. The tag after application tool name is used to mark
checkpoint status for now.

2) Flow tuning: The flow tuning problem can be classified
as a black-box optimization problem. We treat the flow is a
black-box by supplying input design and parameter settings
and measuring the output response in terms of design quality.
In this demo, we use hyperopt [11], an open source hyper-
parameter optimization tool to solve the flow tuning problem.
Demo is in our github repository.

Fig. 4: Demo code for branching flow.

V. CONCLUSION AND FUTURE EXTENSIONS

In this paper, we first expand the concept of electronic CAD
framework to integrated EDA. Then we propose Cocoon, an
infrastructure enhancing the interoperability and interactivity
for integrated EDA. With the help of interface definition,
Cocoon can represent customizable and tunable EDA flows.
We implement two demos to demonstrate that Cocoon is
feasible and flexible for integrated EDA.

Cocoon is under-development now about legality check, em-
bedded flow implementation. In the future, Cocoon will con-
sider about cloud deployment, including distributed checkpoint
design and computation graph scheduling of applications.

REFERENCES

[1] T. J. Barnes, D. Harrison, A. R. Newton, and R. L. Spickelmier,
Electronic CAD frameworks. Springer Science & Business Media,
2012, vol. 185.

[2] T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B.
Kahng, M. Kim, J. Lee, U. Mallappa, M. Neseem et al., “Toward an
open-source digital flow: First learnings from the OpenROAD project,”
in Design Automation Conf. (DAC), 2019.

[3] J. Jung, P.-Y. Lee, Y.-S. Wu, N. K. Darav, I. H.-R. Jiang, V. N. Kravets,
L. Behjat, Y.-L. Li, and G.-J. Nam, “DATC RDF: Robust design flow
database,” in Int’l Conf. on Computer-Aided Design (ICCAD), 2017.

[4] A. B. Kahng and I. L. Markov, “Impact of interoperability on CAD-
IP reuse: an academic viewpoint,” in Int’l Symp. on Quality Electronic
Design (ISQED), 2003.

[5] “Edalize,” https://github.com/olofk/edalize, accessed: 2020-10-15.
[6] “Hammer,” https://github.com/ucb-bar/hammer, accessed: 2020-10-15.
[7] K. Kaur, D. S. Sharma, and D. K. S. Kahlon, “Interoperability and porta-

bility approaches in inter-connected clouds: A review,” ACM Computing
Surveys (CSUR), vol. 50, no. 4, pp. 1–40, 2017.

[8] E. Ustun, S. Xiang, J. Gui, C. Yu, and Z. Zhang, “LAMDA: Learning-
assisted multi-stage autotuning for FPGA design closure,” in Int’l Symp.
on Field-Programmable Custom Computing Machines (FCCM), 2019.

[9] S. Chatterjee and R. Brayton, “A new incremental placement algorithm
and its application to congestion-aware divisor extraction,” in Int’l Conf.
on Computer-Aided Design (ICCAD), 2004.

[10] M. M. Ziegler, H.-Y. Liu, and L. P. Carloni, “Scalable auto-tuning of
synthesis parameters for optimizing high-performance processors,” in
Int’l Symp. on Low Power Electronics and Design (ISLPED), 2016.

[11] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures,” in Int’l Conf. on Machine Learning (ICML), 2013.

https://github.com/olofk/edalize
https://github.com/ucb-bar/hammer

	Introduction
	Integrated EDA
	What is Integrated EDA?
	Possible Solutions

	Cocoon
	Overall Architecture
	Interface Layer
	Customized Flow Definition
	Branching flow
	Iterating flow

	Flow Tuning

	Implementation and Evaluation
	Implementation
	Evaluation
	Branching flow
	Flow tuning


	Conclusion and Future Extensions
	References

