PyVSC

SystemVerilog-Style Constraints and Coverage in Python

Matthew Ballance
matt.ballance@gmail.com

Agenda

Introduction

Constraining and randomizing data

Collecting coverage

PyVSC Environment Integration

Future Work

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Intro

= Randomization and functional coverage collection central to functional verification
= Often incorporated in a verification language, such as SystemVerilog

= Very useful capabilities outside simulation as well

= PyVSC is a Python package that provides randomization and functional coverage

= Python Verification Stimulus and Coverage

= Key Goals:

= SystemVerilog constraints and coverage feature set
= Similar look and feel to provide familiarity for existing SystemVerilog users

= Performance and capacity on-par with SystemVerilog environments

= Ability to record coverage data for later use

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Agenda

Introduction

Constraining and randomizing data

Collecting coverage

PyVSC Environment Integration

Future Work

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Capturing Randomizable Data

= Randomizable classes are decorated with the randobj decorator

= No need to change the inheritance hierarchy to add randomization to an existing class

= PyVSC-specific data types for constrainable fields @vsc.randobj

= Signed and unsigned scalar fields class my_s(object):

* Enum-type fields def _init_ (self):
self.a = vsc.rand _bit t(8)

= Class-type fields
self.b = vsc.rand uint8 t()

= Arrays/lists

. : L @vsc.constraint
Randomizable classes support randomization hooks def ab c(self):

= pre_randomize() method called before randomization self.a < self.b

= post_randomize() method called after

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Capturing Class Constraints

= Class constraints are captured as statements in constraint-decorated methods

= Constraints methods are declarative
= Evaluated once to build a constraint model

= Beware use of procedural constructs

@vsc.constraint
def ab_c(self):
with vsc.if then(self.
self.b == 1
with vsc.else if(self.
self.b == 2
with vsc.else if(self.
self.b ==
with vsc.else if(self.
self.b ==
with vsc.else if(self.
self.b == 16

a

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Constraints are virtual

= Just as in SystemVerilog, constraints can be overridden by inheritance

= Example:
= Class my _base_s declares a constraint ab_c
= Class my_ext_s inherits and declares constraint ab_c
= Instances of my base s havea<b

= Instances of my ext shave b >a

@vsc.randobj
class my_base_s(object):
def init (self):
self.a = vsc.rand_bit t(8)
self.b = vsc.rand_bit t(8)

@vsc.constraint
def ab_c(self):
self.a < self.b

@vsc.randobj
class my_ext_s(my base s):
def init_ (self):
super(). init ()

@vsc.constraint
def ab_c(self):
self.a > self.b

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Randomizing

= PyVSC provides two class methods for randomizing data

= randomize() — just use the class constraints

= randomize_with() — take inline constraints too

= Example:

= Randomize in a loop

= Add an additional constraint using the iteration variable

@vsc.randobj
class my_base_s(object):
def init (self):
self.a = vsc.rand bit t(8)
self.b = vsc.rand bit t(8)
@vsc.constraint
def ab_c(self):
self.a < self.b

item = my base s()

for i in range(10):
with item.randomize with() as it:
it.a == 1

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Random Data and Constraint Features

= PyVSC provides good coverage of SystemVerilog constraint features

= Simplifies adoption by SV-knowledgeable users

= Where to go from here?
= SystemVerilog takes a static view of descriptions
= Python takes a very dynamic view

= Build on SystemVerilog base, explore possibilities
= Build constraints dynamically based on function args
= Create new constraints during simulation

Feature

SystemVerilog

PyVSC

Algebraic constraints

Integer fields

Enum fields

Fixed-size arrays

Variable-size arrays

dist constraint

soft constraint

inside constraint

solve ordering

unigue constraint

foreach constraint

constraint mode

rand mode

if/felse constraint

<|=<|=<|=<|=<|=<|=<|=<]|=<|=<|=<|=<|=<|=<

<|=<|=<|=<|=<|=<|=<|=<|=<|=<]|=<|=<|=<|=<

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Agenda

Introduction

Constraining and randomizing data

Collecting coverage

PyVSC Environment Integration

Future Work

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Declaring a Covergroup

= A PyVSC Covergroup is a class decorated with vsc.covergroup

= The init method specifies

= How data will be sampled

= What coverpoints/crosses compose the covergroup

= Calling the sample() method samples data

@vsc.covergroup
class my covergroup(object):
def init (self):
self.with _sample(
a=vsc.bit t(4)
)
self.cpl = vsc.coverpoint(
self.a, bins={
"a" : vsc.bin(1, 2, 4),
"b" : vsc.bin(8, [12,15])
})

cg i = my_covergroup()
cg i.sample(1)
cg i.sample(2)

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Passing Coverage Data via the Sample Function

= Define the parameters accepted by the sample function

= Parameters must be a PyVSC-defined type

= These parameters are defined as class fields

= When sample is called, the parameters are sampled

@vsc.covergroup
class my covergroup(object):
def init (self):

self.with _sample(
a=vsc.bit t(4)
)

selt.cpl = vsc.coverpolint(
self.a, bins={

"a" : vsc.bin(1, 2, 4),
"b" : vsc.bin(8, [12,15])
})

cg i = my_covergroup()

cg _i.sample(1)
cg i.sample(2)

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Binding Coverpoints to Sampling Data

= Coverpoints can be defined on Python lambda expressions

= This simplifies sampling data from different objects
= No need to pass the entire object to the sample function

= No need to build the object with PyVSC types

= Very helpful in working with arbitrary data

class my_obj(object):
def init_ (self, v):
self.a = v

@vsc.covergroup
class my_covergroup(object):
def init (self):
self.obj = None
self.cpl = vsc.coverpoint(

lambda: self.obj.a, bins={
"a" : vsc.bin(1, 2, 4),

1)
0ol = my obj(1)
02 = my_obj(2)

cg i = my_covergroup()
cg i.0bj = ol
cg i.sample()
cg i.0bj = 02
cg i.sample()

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Coverage Features

= PyVSC currently supports a subset of SystemVerilog constructs

Feature SystemVerilog | PyVSC

covergroup type

= Future work will complete N—
coverpoint bins

coverpoint ignore bins

coverpoint illegal bins

= Request your favorite feature! coverpoint single bin

coverpoint array bin

coverpoint auto bins

coverpoint transition bin

Cross auto bins

Cross bin expressions

cross explicit bins

Cross ignore bins

<|<|=<|<|=|<|=<|<|=<]|=<|=<|<]|<
z\z|z|z|<|z|<|<|<|z|Z|<|<

cross illegal bins

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Agenda

Introduction

Constraining and randomizing data

Collecting coverage

PyVSC Environment Integration

Future Work

Matthew Ballance, PyVSC - WOSET 2020, October 2020

PyVSC Integration Points

= PyVSC is a Python library, and can be used in any environment
= Pros: very flexible

= Cons: user is responsible for handling integration

= Two integration points:
= Random seed management

= Saving coverage data

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Random Seed Management

PyVSC uses the Python random package

Setting the random-package seed controls PyVSC random results

Can directly specify

import random

random.seed(9)

Environments, such as cocotb, automatically set random-package seed

= From environment variables

= From simulator command-line options

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Coverage — Text Report

* PyVSC provides two methods for working with simple coverage reports

= report_coverage prints a simple text report or saves to a file

TYPE my_cg : 100.000000%
CVP a_cp : 100.000000%
o INST my_cg : 100.000000%
. CVP a_cp : 100.000000%
vsc.report _coverage(details=True) INST my_cg_1 : 0.000000%

CVP a_cp : 0.000000%

import vsc

= get_coverage report_model returns an Python-object hierarchy

= Enables creation of custom reports

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Coverage — UCIS XML Report

= write_coverage db saves as a UCIS XML file

= Accellera standard for coverage interchange el — —

Name Coverai ge

~ [TYPE: my_cg 100.00%
» CVP:a_cp 100.00%
~ INST: my_cg 50.00%

import vsc I

vsc.write coverage db("cov.xml"))

al10]

al11]

al12]

al13]

al14]

al15]

~ INST: my_cg_1 50.00%
~ CVP:a cp 50.00%
alo]

COHONOHONOMONOMON

all]

= UCIS XML files can be viewed graphically 2

al4]
als]
alel

« https://github.com/fvutils/pyucis-viewer 3

HFOWOHOFROWOHOKMO WO

Matthew Ballance, PyVSC - WOSET 2020, October 2020

https://github.com/fvutils/pyucis-viewer

Example Use of PyVSC: Google riscv-dv

= Google riscv-dv project generates test programs for RISC-V cores
= Uses constrained-random generation to generate programs
= Defines coverage metrics on executed instruction scenarios

= Provides a SystemVerilog model that uses a simulator for generation and coverage
collection

= Now provides a Python model that uses PyVSC for randomization and coverage
collection

= https://qithub.com/google/riscv-dv

Instruction- :
Execution Coverage

(ISS or RTL) Trace Files Metrics

Stream Test Execution

Generator Programs
PyVSC PyVSC

Matthew Ballance, PyVSC - WOSET 2020, October 2020

https://github.com/google/riscv-dv

Example Use of PyVSC: Google riscv-dv

= Metrics
= ~8k LoC for the Python-based instruction-stream generator
= ~50 covergroups

= ~300 coverpoints and crosses

Instruction-

Stream Test Execution Execution Coverage
Generator Programs (ISS or RTL) Trace Files Metrics

PyVSC PyVSC

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Agenda

Introduction

Constraining and randomizing data

Collecting coverage

PyVSC Environment Integration

Future Work

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Future Work

= Complete SystemVerilog constructs

= Missing constructs primarily in the functional coverage area

= Beyond SystemVerilog
= Python provides opportunity to do things not possible in SystemVerilog
= Programmatically / dynamically created constraints and coverage

= Features for providing increased stimulus-steering

= Performance
= Python excels as an integration language, but it not a high-speed implementation language

= Planning to re-implement core model in C++ for increased performance/capacity

= Specific environment integrations

= Eg cocotb integration to automate coverage-database save on exit

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Getting Started with PyVSC

= Documentation: https://pyvsc.readthedocs.io

= Pre-built package on PyPi: pip install pyvsc
= Linux, Mac OS X

= Currently, no Windows support

= GitHub: https://github.com/fvutils/pyvsc

= Source code

= |ssue trackers

&« c] sc.readthedocs.io/en/latest/introduction.html
By

d Introduction
What is PyV5C?
Contributors

Quickstart Guide
PyVSC Data Types
PyVSC Constraints
PyVSC Coverage
PyVSC Methods
PyVSC Features

API Reference

& Read the Docs

Docs » Introduction Q) Edit on GitHub

Introduction

What is PyVSC?

PyVSC is a Python library that implements random verification-stimulus generation and coverage
collection. PyVSC provides this capability in two forms: an object-oriented Model API, and a
Python-embedded domain-specific language built on top of the Model API. This allows coverage
and randomization features to be programmatically built, defined with user-friendly constructs, or
defined using a mix of the two.

One great way to get an overview of PyVSC is to read a series of blog posts about PyVSC. Links are
below:

.

The fundamentals of modeling stimulus and functional coverage in Python.
Modeling verification data types in Python.
Modeling and capturing functional coverage in Python.
Making use of captured coverage data.
*Python Verification Stimulus and Coverage: Constraints
<https:/bitsbytesgates.blogspot.com/2020/05/python-verification-stimulus-and.html>"_.

.

.

Currently, the Python-embedded domain-specific language supports similar features to those
supported by SystemVerilog. Not all SystemVerilog features are supported, but in some cases
features not supported by SystemVerilog are also supported. Please see the following section
PyVSC Features for a comparison of the user-level coverage and randomization features supported
by PyVSC compared to SystemVerilog.

Here is a quick example showing capturing random data fields, constraints, coverage, and inline
randomization.

@vsc.randobj
class my_item_c(object):
def __init_ (self):
self.a = vsc.rand_bit_t(8)
e1f b rand bit (3}

Matthew Ballance, PyVSC - WOSET 2020, October 2020

https://pyvsc.readthedocs.io/
https://github.com/fvutils/pyvsc

