
PyVSC
SystemVerilog-Style Constraints and Coverage in Python

Matthew Ballance

matt.ballance@gmail.com

Agenda

▪ Introduction

▪ Constraining and randomizing data

▪ Collecting coverage

▪ PyVSC Environment Integration

▪ Future Work

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Intro

▪ Randomization and functional coverage collection central to functional verification

▪ Often incorporated in a verification language, such as SystemVerilog

▪ Very useful capabilities outside simulation as well

▪ PyVSC is a Python package that provides randomization and functional coverage

▪ Python Verification Stimulus and Coverage

▪ Key Goals:

▪ SystemVerilog constraints and coverage feature set

▪ Similar look and feel to provide familiarity for existing SystemVerilog users

▪ Performance and capacity on-par with SystemVerilog environments

▪ Ability to record coverage data for later use

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Agenda

▪ Introduction

▪ Constraining and randomizing data

▪ Collecting coverage

▪ PyVSC Environment Integration

▪ Future Work

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Capturing Randomizable Data

▪ Randomizable classes are decorated with the randobj decorator

▪ No need to change the inheritance hierarchy to add randomization to an existing class

▪ PyVSC-specific data types for constrainable fields

▪ Signed and unsigned scalar fields

▪ Enum-type fields

▪ Class-type fields

▪ Arrays/lists

▪ Randomizable classes support randomization hooks

▪ pre_randomize() method called before randomization

▪ post_randomize() method called after

Matthew Ballance, PyVSC - WOSET 2020, October 2020

@vsc.randobj
class my_s(object):

def __init__(self):
self.a = vsc.rand_bit_t(8)
self.b = vsc.rand_uint8_t()

@vsc.constraint
def ab_c(self):

self.a < self.b

Capturing Class Constraints

▪ Class constraints are captured as statements in constraint-decorated methods

▪ Constraints methods are declarative

▪ Evaluated once to build a constraint model

▪ Beware use of procedural constructs

Matthew Ballance, PyVSC - WOSET 2020, October 2020

@vsc.constraint
def ab_c(self):
with vsc.if_then(self.a == 1):
self.b == 1

with vsc.else_if(self.a == 2):
self.b == 2

with vsc.else_if(self.a == 3):
self.b == 4

with vsc.else_if(self.a == 4):
self.b == 8

with vsc.else_if(self.a == 5):
self.b == 16

Constraints are virtual

▪ Just as in SystemVerilog, constraints can be overridden by inheritance

▪ Example:

▪ Class my_base_s declares a constraint ab_c

▪ Class my_ext_s inherits and declares constraint ab_c

▪ Instances of my_base_s have a < b

▪ Instances of my_ext_s have b > a

Matthew Ballance, PyVSC - WOSET 2020, October 2020

@vsc.randobj
class my_base_s(object):
def __init__(self):
self.a = vsc.rand_bit_t(8)
self.b = vsc.rand_bit_t(8)

@vsc.constraint
def ab_c(self):
self.a < self.b

@vsc.randobj
class my_ext_s(my_base_s):
def __init__(self):
super().__init__()

@vsc.constraint
def ab_c(self):
self.a > self.b

Randomizing

▪ PyVSC provides two class methods for randomizing data

▪ randomize() – just use the class constraints

▪ randomize_with() – take inline constraints too

▪ Example:

▪ Randomize in a loop

▪ Add an additional constraint using the iteration variable

Matthew Ballance, PyVSC - WOSET 2020, October 2020

@vsc.randobj
class my_base_s(object):
def __init__(self):
self.a = vsc.rand_bit_t(8)
self.b = vsc.rand_bit_t(8)

@vsc.constraint
def ab_c(self):
self.a < self.b

item = my_base_s()
for i in range(10):
with item.randomize_with() as it:
it.a == i

Random Data and Constraint Features

▪ PyVSC provides good coverage of SystemVerilog constraint features

▪ Simplifies adoption by SV-knowledgeable users

▪ Where to go from here?

▪ SystemVerilog takes a static view of descriptions

▪ Python takes a very dynamic view

▪ Build on SystemVerilog base, explore possibilities

▪ Build constraints dynamically based on function args

▪ Create new constraints during simulation

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Feature SystemVerilog PyVSC

Algebraic constraints Y Y

Integer fields Y Y

Enum fields Y Y

Fixed-size arrays Y Y

Variable-size arrays Y Y

dist constraint Y Y

soft constraint Y Y

inside constraint Y Y

solve ordering Y Y

unique constraint Y Y

foreach constraint Y Y

constraint_mode Y Y

rand_mode Y Y

if/else constraint Y Y

Agenda

▪ Introduction

▪ Constraining and randomizing data

▪ Collecting coverage

▪ PyVSC Environment Integration

▪ Future Work

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Declaring a Covergroup

▪ A PyVSC Covergroup is a class decorated with vsc.covergroup

▪ The init method specifies

▪ How data will be sampled

▪ What coverpoints/crosses compose the covergroup

▪ Calling the sample() method samples data

Matthew Ballance, PyVSC - WOSET 2020, October 2020

@vsc.covergroup
class my_covergroup(object):
def __init__(self):
self.with_sample(
a=vsc.bit_t(4)

)
self.cp1 = vsc.coverpoint(
self.a, bins={

"a" : vsc.bin(1, 2, 4),
"b" : vsc.bin(8, [12,15])

})

cg_i = my_covergroup()
cg_i.sample(1)
cg_i.sample(2)

Passing Coverage Data via the Sample Function

▪ Define the parameters accepted by the sample function

▪ Parameters must be a PyVSC-defined type

▪ These parameters are defined as class fields

▪ When sample is called, the parameters are sampled

Matthew Ballance, PyVSC - WOSET 2020, October 2020

@vsc.covergroup
class my_covergroup(object):
def __init__(self):
self.with_sample(
a=vsc.bit_t(4)

)
self.cp1 = vsc.coverpoint(
self.a, bins={

"a" : vsc.bin(1, 2, 4),
"b" : vsc.bin(8, [12,15])

})

cg_i = my_covergroup()
cg_i.sample(1)
cg_i.sample(2)

Binding Coverpoints to Sampling Data
▪ Coverpoints can be defined on Python lambda expressions

▪ This simplifies sampling data from different objects

▪ No need to pass the entire object to the sample function

▪ No need to build the object with PyVSC types

▪ Very helpful in working with arbitrary data

Matthew Ballance, PyVSC - WOSET 2020, October 2020

class my_obj(object):
def __init__(self, v):
self.a = v

@vsc.covergroup
class my_covergroup(object):
def __init__(self):
self.obj = None
self.cp1 = vsc.coverpoint(
lambda: self.obj.a, bins={
"a" : vsc.bin(1, 2, 4),

})
o1 = my_obj(1)
o2 = my_obj(2)
cg_i = my_covergroup()
cg_i.obj = o1
cg_i.sample()
cg_i.obj = o2
cg_i.sample()

Coverage Features
▪ PyVSC currently supports a subset of SystemVerilog constructs

▪ Future work will complete

▪ Request your favorite feature!

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Feature SystemVerilog PyVSC

covergroup type Y Y

coverpoint bins Y Y

coverpoint ignore_bins Y N

coverpoint illegal_bins Y N

coverpoint single bin Y Y

coverpoint array bin Y Y

coverpoint auto bins Y Y

coverpoint transition bin Y N

cross auto bins Y Y

cross bin expressions Y N

cross explicit bins Y N

cross ignore_bins Y N

cross illegal_bins Y N

Agenda

▪ Introduction

▪ Constraining and randomizing data

▪ Collecting coverage

▪ PyVSC Environment Integration

▪ Future Work

Matthew Ballance, PyVSC - WOSET 2020, October 2020

PyVSC Integration Points

▪ PyVSC is a Python library, and can be used in any environment

▪ Pros: very flexible

▪ Cons: user is responsible for handling integration

▪ Two integration points:

▪ Random seed management

▪ Saving coverage data

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Random Seed Management

▪ PyVSC uses the Python random package

▪ Setting the random-package seed controls PyVSC random results

▪ Can directly specify

▪ Environments, such as cocotb, automatically set random-package seed

▪ From environment variables

▪ From simulator command-line options

▪ …

Matthew Ballance, PyVSC - WOSET 2020, October 2020

import random
…
random.seed(0)

Coverage – Text Report
▪ PyVSC provides two methods for working with simple coverage reports

▪ report_coverage prints a simple text report or saves to a file

▪ get_coverage_report_model returns an Python-object hierarchy

▪ Enables creation of custom reports

Matthew Ballance, PyVSC - WOSET 2020, October 2020

import vsc
…
vsc.report_coverage(details=True)

Coverage – UCIS XML Report
▪ write_coverage_db saves as a UCIS XML file

▪ Accellera standard for coverage interchange

▪ UCIS XML files can be viewed graphically

▪ https://github.com/fvutils/pyucis-viewer

Matthew Ballance, PyVSC - WOSET 2020, October 2020

import vsc
…
vsc.write_coverage_db("cov.xml")

https://github.com/fvutils/pyucis-viewer

Example Use of PyVSC: Google riscv-dv

▪ Google riscv-dv project generates test programs for RISC-V cores

▪ Uses constrained-random generation to generate programs

▪ Defines coverage metrics on executed instruction scenarios

▪ Provides a SystemVerilog model that uses a simulator for generation and coverage
collection

▪ Now provides a Python model that uses PyVSC for randomization and coverage
collection

▪ https://github.com/google/riscv-dv

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Instruction-

Stream

Generator

Test

Programs

Execution

(ISS or RTL)
Execution

(ISS or RTL)
Execution

(ISS or RTL)

Execution

Trace Files
Coverage

Metrics

PyVSC PyVSC

https://github.com/google/riscv-dv

Example Use of PyVSC: Google riscv-dv

▪ Metrics

▪ ~8k LoC for the Python-based instruction-stream generator

▪ ~50 covergroups

▪ ~300 coverpoints and crosses

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Instruction-

Stream

Generator

Test

Programs

Execution

(ISS or RTL)
Execution

(ISS or RTL)
Execution

(ISS or RTL)

Execution

Trace Files
Coverage

Metrics

PyVSC PyVSC

Agenda

▪ Introduction

▪ Constraining and randomizing data

▪ Collecting coverage

▪ PyVSC Environment Integration

▪ Future Work

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Future Work
▪ Complete SystemVerilog constructs

▪ Missing constructs primarily in the functional coverage area

▪ Beyond SystemVerilog

▪ Python provides opportunity to do things not possible in SystemVerilog

▪ Programmatically / dynamically created constraints and coverage

▪ Features for providing increased stimulus-steering

▪ Performance

▪ Python excels as an integration language, but it not a high-speed implementation language

▪ Planning to re-implement core model in C++ for increased performance/capacity

▪ Specific environment integrations

▪ Eg cocotb integration to automate coverage-database save on exit

Matthew Ballance, PyVSC - WOSET 2020, October 2020

Getting Started with PyVSC
▪ Documentation: https://pyvsc.readthedocs.io

▪ Pre-built package on PyPi: pip install pyvsc

▪ Linux, Mac OS X

▪ Currently, no Windows support

▪ GitHub: https://github.com/fvutils/pyvsc

▪ Source code

▪ Issue trackers

Matthew Ballance, PyVSC - WOSET 2020, October 2020

https://pyvsc.readthedocs.io/
https://github.com/fvutils/pyvsc

