
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

PyVSC: SystemVerilog-Style Constraints, and

Coverage in Python

M. Ballance

Milwaukie, OR, USA

matt.ballance@gmail.com

Abstract—Constrained-randomization and functional

coverage are key elements in the widely-used SystemVerilog-based

verification flow. The use of Python in functional verification is

growing in popularity, but Python has historically lacked support

for the constraint and coverage features provided by

SystemVerilog. This paper describes PyVSC, a library that

provides these features.

Keywords—functional verification, Python, constrained

random, functional coverage

I. INTRODUCTION

Verification flows based on constrained-random stimulus
generation and functional coverage collection have become
dominant where SystemVerilog is used for the testbench
environment. Consequently, verification engineers have
significant experience with the constructs and patterns provided
by SystemVerilog.

There is growing interest in making use of Python in
verification environments – either as a complete verification
environment or as an adjunct to a SystemVerilog verification
environment. It is desirable in both of these cases to be able to
make use of constrained random stimulus generation and to
capture functional coverage. The PyVSC[1] library brings these
features to Python, with the goal of providing as similar a user
experience as possible to what SystemVerilog-knowledgeable
verification engineers are familiar with. The PyVSC library also
takes advantage of advances in solver technology to support
constraint complexity on par with what is in use in
SystemVerilog-based environments.

II. RELATED WORK

Other projects have, of course, sought to bring constrained
randomization and/or functional coverage collection to
languages used for functional verification that lack built-in
support.

A. cocotb-coverage

Possibly the most relevant of these packages, given the target
of Python, is the cocotb-coverage library [2][3]. This library
supports basic randomization and functional coverage
collection. The constraints used by the cocotb-coverage library
are captured as executable Python methods and are evaluated
using a pure-Python SAT solver. This approach to capturing and
solving constraints restricts each field to having no more than
two constraints, and can result in poor performance and
capacity.

Coverage is captured as a set of individual coverpoint
instances, and is not organized into covergroup types and
instances in the same way that SystemVerilog does.

B. SystemC

SystemC has been one of the longer-lasting languages used
for modeling and verifying hardware that is built as an
embedded domain-specific language within a general-purpose
programming language (C++). While libraries for constraints
and coverage targeting SystemC are not directly applicable in
Python, it’s worthwhile considering approaches taken.

The SystemC Verification Library (SCV) provides basic
randomizations and constraints, using a Binary Decision
Diagram (BDD) solver. BDD-based constraint solvers are
known to have performance and capacity challenges, especially
with sizable constraint spaces. No support for capturing
functional coverage is provided.

The CRAVE [4] library sought to bring higher performance
and capacity to randomization in SystemC using Satifiability
Modulo Theories (SMT) constraint solvers. While there is some
evidence that some support for functional coverage was
developed [5], this is not part of the published CRAVE library.

III. MODELING CONSTRAINED-RANDOM STIMULUS

PyVSC is considered an embedded domain-specific
language (eDSL) because it effectively extends the Python
language with new semantics for constraint solving and
coverage capture. There are several key Python language
features that are used to layer these new semantics on top of the
Python language. Library classes and methods are used to
capture some constraints and coverage constructs. Python
decorators are used to identify Python classes and methods as
having specific significance. Python introspection is used to
obtain source locations for declarations, to automatically-assign
names to elements, and to dynamically modify user-declared
classes. Python ‘with’ statements are used to identify statement
blocks. PyVSC uses the Boolector SMT solver[6] to solve the
user-specified constraints.

A. Data Fields and Classes

Both SystemVerilog and PyVSC use data fields with a
specified bit width. This is important to ensure that both
constraints and coverage constructs are interpreted correctly.
PyVSC supports creating data elements individually, but data
elements are typically grouped with constraints in randomizable
classes.

Figure 1 - Randomizable Class Declaration

As shown in Figure 1, a randomizable class is identified with

the @vsc.randobj decorator. This builds infrastructure into the

class to support randomization, and ensures that constraint

elaboration occurs after a class instance is created.

Class members that can be constrained are created using

methods provided by the library. The width of data fields can

either be specified directly, or via convenience methods such

as vsc.rand_uint8_t that create data fields with commonly-

used widths.

B. Class Constraints

Constraints are specified as Python statements within Python
methods decorated with @vsc.constraint. Constraint methods
are evaluated once to construct a constraint data model from the
statements within the method.

Figure 2 - If/else Constraints

The difference between Python statements and PyVSC
constraints is most visible when control-flow constraints are
used, as shown in Figure 2. In these cases, Python statements
cannot be used directly. It is necessary to use the PyVSC-
provided construct to capture the constraint intent.

Just as with SystemVerilog, constraint blocks are considered
virtual, in that a same-named constraint in a sub-class overrides
the constraint in the super-class.

Figure 3 - Overriding Constraints

In the example in Figure 3, the relationship a > b will hold
for all instances of class my_ext_s because the ab_c constraint
in the my_ext_s type overrides the ab_c constraint in the
my_base_s type.

Figure 4 summarizes the constraint statements currently
supported by PyVSC and those supported by SystemVerilog.

Feature SystemVerilog PyVSC

Algebraic constraints Y Y

Integer fields Y Y

Enum fields Y Y

Fixed-size arrays Y Y

Variable-size arrays Y Y

dist constraint Y Y

soft constraint Y Y

inside constraint Y Y

solve ordering Y Y

unique constraint Y Y

foreach constraint Y Y

constraint_mode Y Y

rand_mode Y Y

if/else constraint Y Y
Figure 4 - Supported Constraint Statements

C. Randomizing a Data Field

PyVSC randomziable classes have randomize and
randomize_with methods that are used for randomizing fields
within that class.

@vsc.randobj
class my_s(object):

 def __init__(self):
 self.a = vsc.rand_bit_t(8)
 self.b = vsc.rand_uint8_t()

 @vsc.constraint
 def ab_c(self):
 self.a < self.b

@vsc.constraint
 def ab_c(self):
 with vsc.if_then(self.a == 1):
 self.b == 1
 with vsc.else_if(self.a == 2):
 self.b == 2
 with vsc.else_if(self.a == 3):
 self.b == 4
 with vsc.else_if(self.a == 4):
 self.b == 8
 with vsc.else_if(self.a == 5):
 self.b == 16

@vsc.randobj
class my_base_s(object):

 def __init__(self):
 self.a = vsc.rand_bit_t(8)
 self.b = vsc.rand_bit_t(8)

 @vsc.constraint
 def ab_c(self):
 self.a < self.b

@vsc.randobj
class my_ext_s(my_base_s):

 def __init__(self):
 super().__init__()

 @vsc.constraint
 def ab_c(self):
 self.a > self.b

Figure 5 - Randomizing a Class with Additional Constraints

PyVSC supports randomization with additional constraints,
as well as randomization considering just the constraints
declared within the class. Figure 5 shows an example of adding
additional constraints. The randomize_with class method is
called using a Python with clause. Additional constraints are
specified within the with clause. All legal constraints supported
by PyVSC may be used with an inline constraint.

Figure 6 - Using constraint_mode to disable constraints

PyVSC also supports constraint-control methods, such as
rand_mode for variables and constraint_mode for constraint
blocks. Figure 6 shows using constraint_mode to temporarily
disable a constraint block.

IV. MODELING FUNCTIONAL COVERAGE

Modeling functional coverage constructs with PyVSC
follows the same patterns used for modeling randomizable
classes and constraints.

A. Declaring a Covergroup

A covergroup type is declared with PyVSC as a regular
Python class decorated with the @vsc.covergroup decorator.

Figure 7 - Declaring a covergroup type

PyVSC covergroups support several mechanisms to provide
coverage data for sampling. Figure 7 shows using the
with_sample method, which creates a method named sample on
the covergroup class. Coverage data is provided via method
parameters each time the sample function is called.

Figure 8 - Binding sampling data at instantiation

Another approach is shown in Figure 8. In this case,
sampling data is provided via a lambda function that is specified
when the covergroup is instanced. Calling ‘sample’ on the
covergroup causes that lambda to be called and read the current
value of the data to be sampled.

B. Specifying Coverpoints and Bins

Coverpoints and bins are specified in the covergroup class
constructor. User-specified single bins and arrays of bins are
supported. If no bins are specified, bins are automatically
partitioned according to the auto-bin max.

Figure 9 - Coverpoint Cross

@vsc.randobj
class my_base_s(object):

 def __init__(self):
 self.a = vsc.rand_bit_t(8)
 self.b = vsc.rand_bit_t(8)

 @vsc.constraint
 def ab_c(self):
 self.a < self.b

item = my_base_s()
for i in range(10):
 with item.randomize_with() as it:
 it.a == i

@vsc.randobj
 class my_item(object):

 def __init__(self):
 self.a = vsc.rand_bit_t(8)
 self.b = vsc.rand_bit_t(8)

 @vsc.constraint
 def valid_ab_c(self):
 self.a < self.b

item = my_item()

Always generate valid values
for i in range(10):
 item.randomize()

item.valid_ab_c.constraint_mode(False)

Allow invalid values
for i in range(10):
 item.randomize()

@vsc.covergroup
class my_covergroup(object):

 def __init__(self):
 self.with_sample(
 a=vsc.bit_t(4)
)
 self.cp1 = vsc.coverpoint(
 self.a, bins={
 "a" : vsc.bin(1, 2, 4),
 "b" : vsc.bin(8, [12,15])
 })

@covergroup
 class my_covergroup(object):

 def __init__(self, a):
 super().__init__()

 self.cp1 = coverpoint(a,
 bins=dict(
 a = bin_array([], [1,15])
))
 a = 0;
 cg = my_covergroup(lambda:a)
 a=1
 cg.sample() # Hit the first bin of cp1

@vsc.covergroup
class my_covergroup(object):

 def __init__(self):
 self.with_sample(
 a=vsc.bit_t(4),
 b=vsc.bit_t(4))
 self.cp1 = vsc.coverpoint(self.a, bins={
 "a" : vsc.bin_array([], [1,15])
 })
 self.cp2 = vsc.coverpoint(self.b, bins={
 "b" : vsc.bin_array([], [1,15])
 })

 self.cp1X2=vsc.cross([self.cp1, self.cp2])

Coverpoints crosses are also supported, as shown in Figure
9.

A summary of coverage features supported by PyVSC and
SystemVerilog is shown below.

Feature SystemVerilog PyVSC

covergroup type Y Y

coverpoint bins Y Y

coverpoint ignore_bins Y N

coverpoint illegal_bins Y N

coverpoint single bin Y Y

coverpoint array bin Y Y

coverpoint auto bins Y Y

coverpoint transition bin Y N

cross auto bins Y Y

cross bin expressions Y N

cross explicit bins Y N

cross ignore_bins Y N

cross illegal_bins Y N

V. ENVIRONMENT INTEGRATION

The PyVSC library is environment independent and, for
example, does not require the use of cocotb[7]. This
independence allows PyVSC to integrate into any Python-based
environment, but also imposes some overhead on the end user.

Aside from the modeling layer used to express randomizable
data, constraints, and coverage, PyVSC has two integration
points with the environment: the random seed, and saving
coverage data. Users of PyVSC must ensure that the random
seed is properly configured, and that coverage data is properly
saved before the environment exits.

A. Random Seed Management

Random generation is controlled by a seed, in order to ensure
that results can be reproduced. PyVSC derives its randomization
from the Python random package, so configuring the random-
package seed also sets the PyVSC seed.

Some environments, such as cocotb [7], configure the global
random seed based on user-specified environment variables
and/or command-line options. In other cases, the random seed
must explicitly be configured as part of the PyVSC environment
integration. In these cases, the seed should be set directly, as
shown in Figure 10.

Figure 10 - Configuring the Random Seed

B. Saving Coverage Data

In most cases, coverage data must be converted to some
textual or binary persistent form in order to make use of it
outside the environment run in which it was collected. PyVSC
provides several ways to access the collected coverage data.

Properly retrieving and saving coverage data is the other key
aspect to integrating PyVSC into an environment.

Figure 11 - Reporting Functional Coverage Textually

The report_coverage method, shown in Figure 11, creates a

textual coverage report with information on all covergroup types
and instances. By default, the coverage report is written to the
console (stdout), as shown in Figure 12. The output of
report_coverage can also be written to a file.

Figure 12 - Example Textual Coverage Report

PyVSC also provides the write_coverage_db method to save
collected functional coverage data in Accellera Unified
Coverage Interoperability Standard (UCIS) [8] format, as shown
in Figure 13.

Figure 13 - Saving Coverage Data in UCIS Format

PyVSC also provides access to a coverage report as a Python
object hierarchy, which can be used to produce a coverage report
in a custom format. Showing how to use this mechanism for
manipulating coverage data is beyond the scope of this paper.

C. Example Integration

One example of PyVSC usage is the Google RISC-V DV
project [9]. The RISC-V DV project provides a random
instruction-stream generator for the RISC-V ISA. The RISC-V
DV project also defines functional coverage metrics to be
collected on the result of running these randomly-generated
programs.

The project currently provides two primary implementations
of randomization and functional coverage collection: a
SystemVerilog model that uses the random solver and coverage
collection mechanisms within a SystemVerilog-compliant
simulator, and a pure-Python implementation using PyVSC.

Figure 14 - RISC-V DV Flow

Figure 14 shows the RISC-V DV flow. The random
instruction-stream generator creates assembly-level test

import random

…

random.seed(0)

import vsc

…

vsc.report_coverage(details=True)

import vsc

…

vsc.write_coverage_db("cov.xml")

programs. These programs are compiled and executed by either
an ISS or RTL model of a RISC-V processor. Test-program
execution results in a series of execution-trace files which are
processed and sampled by the functional coverage model to
produce coverage data about the actual instructions that
executed.

The RISC-V DV Python flow creates approximately 50
covergroups, and around 300 coverpoints and crosses. Coverage
data is saved as a UCIS XML file.

VI. WORKING WITH COVERAGE DATA

Once coverage data has been collected, it can be displayed
as a simple text report that shows the coverage achieved by each
covergroup instance as well as the total coverage collected by all
instances of a covergroup type. Coverage data can also be saved
to a Unified Coverage Interchange Standard (UCIS) XML file
for processing by other tools.

Figure 15 - Coverage Data Visualized

Figure 15 shows a graphical view of coverage data captured
in UCIS XML format.

VII. FUTURE WORK

While PyVSC is currently in a usable state, there are features
that are still on the near-term roadmap, as well as extensions to
be considered. The major areas of effort are listed below.

A. Complete supporting SystemVerilog Constructs

The highest priority for future work with PyVSC is to
complete implementation of missing features that
SystemVerilog supports. Currently, most of the constraint
constructs are supported. More work exists to complete support
of all functional coverage constructs.

B. Beyond SystemVerilog

Thus far, PyVSC has focused on achieving feature parity
with the constraint and functional coverage constructs supported
by SystemVerilog. But, supporting these features using a library
in the context of a general-purpose programming language
leaves open the possibility to go much further.

Coverage and constraint constructs are built into the
SystemVerilog language. While this makes them easily
accessible as first-class language features, it also makes them
difficult or impossible to use programmatically. One interesting
direction to explore with PyVSC is the hybrid space where user-
specified constraints are programmatically processed to build

more complex constraints. Because PyVSC constraint and
coverage constructs are implemented in terms of Python
language features, supporting programmatic enhancement of the
existing constructs is natural.

C. Performance Improvements

PyVSC is a pure-Python library built on top of the Boolector
SMT solver. Since the Boolector solver does most of the
compute-bound work of constraint solving, PyVSC’s
performance is quite good. That said, there are cases –
specifically with arrays and iterative constraints – where
Python’s interpreted nature leads to slower than desirable
performance.

A natural next step is to re-implement the core constraint and
coverage data mode in C++ and expose it as a Python extension.
Early experiments with this approach have shown significant
performance improvements are possible in cases where the
number of variables is significant.

D. Integration Improvements

As described in section V, PyVSC currently provides little
or no environment-specific integration for specific
environments. This keeps PyVSC free of dependencies on
specific environments, but at the cost of requiring users to
determine how to integrate PyVSC’s features with the services
provided by the target environment.

One area of future work is to enhance the integration
between PyVSC and various existing verification environments,
such as cocotb.

VIII. CONCLUSION

Randomization and functional coverage are key to industrial
functional verification practice. PyVSC brings these features to
Python in a form that will be familiar to SystemVerilog users.
This boosts the capabilities of Python-based verification by
making it easier for SystemVerilog practitioners to reuse their
knowledge of constraints and coverage in Python.

REFERENCES

[1] M. Ballance, PyVSC, GitHub, https://github.com/fvutils/pyvsc,

[2] M. Cieplucha, W. Pleskacz, “New Constrained Random and Metric-
Driven Verification Methodology Using Python”, DVCon Europe 2017
http://events.dvcon.org/2017/proceedings/papers/02_3.pdf

[3] M. Cieplucha, W. Pleskacz, cocotb-coverage, GitHub,
https://github.com/mciepluc/cocotb-coverage

[4] F. Haedicke, H. M. Le, D. Große, and R. Drechsler, “CRAVE: An
advanced constrained random verification environment for SystemC,”. In
International Symposium on System-on-Chip, pp. 1-7, 2012

[5] H. M. Le, R. Dreschler, “Boosting SystemC-based Testbenches with
Modern C++ and Coverage-Driven Generation”, Conference: DVCon
Europe 2015

[6] R. Brummayer, A. Biere, “Boolector: An Efficient SMT Solver for Bit-
Vectors and Arrays”, Conference: Tools and Algorithms for the
Constructions and Analysis of Systems (TACAS) 2009

[7] cocotb, GitHub, https://github.com/cocotb/cocotb

[8] Accellera, Unified Coverage Interoperability Standard,
https://www.accellera.org/downloads/standards/ucis

[9] Google, RISC-V DV, GitHub, https://github.com/google/risc

https://github.com/fvutils/pyvsc
http://events.dvcon.org/2017/proceedings/papers/02_3.pdf
https://github.com/mciepluc/cocotb-coverage
https://github.com/cocotb/cocotb
https://www.accellera.org/downloads/standards/ucis

