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Abstract—Constrained-randomization and functional 

coverage are key elements in the widely-used SystemVerilog-based 

verification flow. The use of Python in functional verification is 

growing in popularity, but Python has historically lacked support 

for the constraint and coverage features provided by 

SystemVerilog. This paper describes PyVSC, a library that 

provides these features. 
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I. INTRODUCTION 

Verification flows based on constrained-random stimulus 
generation and functional coverage collection have become 
dominant where SystemVerilog is used for the testbench 
environment. Consequently, verification engineers have 
significant experience with the constructs and patterns provided 
by SystemVerilog.  

There is growing interest in making use of Python in 
verification environments – either as a complete verification 
environment or as an adjunct to a SystemVerilog verification 
environment. It is desirable in both of these cases to be able to 
make use of constrained random stimulus generation and to 
capture functional coverage. The PyVSC[1] library brings these 
features to Python, with the goal of providing as similar a user 
experience as possible to what SystemVerilog-knowledgeable 
verification engineers are familiar with. The PyVSC library also 
takes advantage of advances in solver technology to support 
constraint complexity on par with what is in use in 
SystemVerilog-based environments.  

II. RELATED WORK 

Other projects have, of course, sought to bring constrained 
randomization and/or functional coverage collection to 
languages used for functional verification that lack built-in 
support.  

A. cocotb-coverage 

Possibly the most relevant of these packages, given the target 
of Python, is the cocotb-coverage library [2][3]. This library 
supports basic randomization and functional coverage 
collection. The constraints used by the cocotb-coverage library 
are captured as executable Python methods and are evaluated 
using a pure-Python SAT solver. This approach to capturing and 
solving constraints restricts each field to having no more than 
two constraints, and can result in poor performance and 
capacity.  

Coverage is captured as a set of individual coverpoint 
instances, and is not organized into covergroup types and 
instances in the same way that SystemVerilog does.  

B. SystemC  

SystemC has been one of the longer-lasting languages used 
for modeling and verifying hardware that is built as an 
embedded domain-specific language within a general-purpose 
programming language (C++). While libraries for constraints 
and coverage targeting SystemC are not directly applicable in 
Python, it’s worthwhile considering approaches taken. 

The SystemC Verification Library (SCV) provides basic 
randomizations and constraints, using a Binary Decision 
Diagram (BDD) solver. BDD-based constraint solvers are 
known to have performance and capacity challenges, especially 
with sizable constraint spaces. No support for capturing 
functional coverage is provided. 

The CRAVE [4] library sought to bring higher performance 
and capacity to randomization in SystemC using Satifiability 
Modulo Theories (SMT) constraint solvers. While there is some 
evidence that some support for functional coverage was 
developed [5], this is not part of the published CRAVE library. 

III. MODELING CONSTRAINED-RANDOM STIMULUS 

PyVSC is considered an embedded domain-specific 
language (eDSL) because it effectively extends the Python 
language with new semantics for constraint solving and 
coverage capture. There are several key Python language 
features that are used to layer these new semantics on top of the 
Python language. Library classes and methods are used to 
capture some constraints and coverage constructs. Python 
decorators are used to identify Python classes and methods as 
having specific significance. Python introspection is used to 
obtain source locations for declarations, to automatically-assign 
names to elements, and to dynamically modify user-declared 
classes. Python ‘with’ statements are used to identify statement 
blocks. PyVSC uses the Boolector SMT solver[6] to solve the 
user-specified constraints.  

A. Data Fields and Classes 

Both SystemVerilog and PyVSC use data fields with a 
specified bit width. This is important to ensure that both 
constraints and coverage constructs are interpreted correctly. 
PyVSC supports creating data elements individually, but data 
elements are typically grouped with constraints in randomizable 
classes. 



 
Figure 1 - Randomizable Class Declaration 

As shown in Figure 1, a randomizable class is identified with 

the @vsc.randobj decorator. This builds infrastructure into the 

class to support randomization, and ensures that constraint 

elaboration occurs after a class instance is created. 

Class members that can be constrained are created using 

methods provided by the library. The width of data fields can 

either be specified directly, or via convenience methods such 

as vsc.rand_uint8_t that create data fields with commonly-

used widths. 

B. Class Constraints 

Constraints are specified as Python statements within Python 
methods decorated with @vsc.constraint. Constraint methods 
are evaluated once to construct a constraint data model from the 
statements within the method.  

 
Figure 2 - If/else Constraints 

The difference between Python statements and PyVSC 
constraints is most visible when control-flow constraints are 
used, as shown in Figure 2. In these cases, Python statements 
cannot be used directly. It is necessary to use the PyVSC-
provided construct to capture the constraint intent. 

Just as with SystemVerilog, constraint blocks are considered 
virtual, in that a same-named constraint in a sub-class overrides 
the constraint in the super-class.  

 
Figure 3 - Overriding Constraints 

In the example in Figure 3, the relationship a > b will hold 
for all instances of class my_ext_s because the ab_c constraint 
in the my_ext_s type overrides the ab_c constraint in the 
my_base_s type. 

Figure 4 summarizes the constraint statements currently 
supported by PyVSC and those supported by SystemVerilog. 

 

Feature SystemVerilog PyVSC 

Algebraic constraints Y Y 

Integer fields Y Y 

Enum fields Y Y 

Fixed-size arrays Y Y 

Variable-size arrays Y Y 

dist constraint Y Y 

soft constraint Y Y 

inside constraint Y Y 

solve ordering Y Y 

unique constraint Y Y 

foreach constraint Y Y 

constraint_mode Y Y 

rand_mode Y Y 

if/else constraint Y Y 
Figure 4 - Supported Constraint Statements 

C. Randomizing a Data Field 

PyVSC randomziable classes have randomize and 
randomize_with methods that are used for randomizing fields 
within that class.  

@vsc.randobj 
class my_s(object): 
 
    def __init__(self): 
        self.a = vsc.rand_bit_t(8) 
        self.b = vsc.rand_uint8_t() 
 
    @vsc.constraint 
    def ab_c(self): 
        self.a < self.b 
 

 

@vsc.constraint 
    def ab_c(self): 
        with vsc.if_then(self.a == 1): 
            self.b == 1 
        with vsc.else_if(self.a == 2): 
            self.b == 2 
        with vsc.else_if(self.a == 3): 
            self.b == 4 
        with vsc.else_if(self.a == 4): 
            self.b == 8 
        with vsc.else_if(self.a == 5): 
            self.b == 16 

 

 

@vsc.randobj 
class my_base_s(object): 
 
    def __init__(self): 
        self.a = vsc.rand_bit_t(8) 
        self.b = vsc.rand_bit_t(8) 
 
    @vsc.constraint 
    def ab_c(self): 
       self.a < self.b 
 
@vsc.randobj 
class my_ext_s(my_base_s): 
 
    def __init__(self): 
        super().__init__() 
 
    @vsc.constraint 
    def ab_c(self): 
       self.a > self.b 

 



 
Figure 5 - Randomizing a Class with Additional Constraints 

PyVSC supports randomization with additional constraints, 
as well as randomization considering just the constraints 
declared within the class. Figure 5 shows an example of adding 
additional constraints. The randomize_with class method is 
called using a Python with clause. Additional constraints are 
specified within the with clause. All legal constraints supported 
by PyVSC may be used with an inline constraint. 

 
Figure 6 - Using constraint_mode to disable constraints 

PyVSC also supports constraint-control methods, such as 
rand_mode for variables and constraint_mode for constraint 
blocks. Figure 6 shows using constraint_mode to temporarily 
disable a constraint block. 

 

IV. MODELING FUNCTIONAL COVERAGE 

Modeling functional coverage constructs with PyVSC 
follows the same patterns used for modeling randomizable 
classes and constraints. 

A. Declaring a Covergroup 

A covergroup type is declared with PyVSC as a regular 
Python class decorated with the @vsc.covergroup decorator. 

 
Figure 7 - Declaring a covergroup type 

PyVSC covergroups support several mechanisms to provide 
coverage data for sampling. Figure 7 shows using the 
with_sample method, which creates a method named sample on 
the covergroup class. Coverage data is provided via method 
parameters each time the sample function is called. 

 
Figure 8 - Binding sampling data at instantiation 

Another approach is shown in Figure 8. In this case, 
sampling data is provided via a lambda function that is specified 
when the covergroup is instanced. Calling ‘sample’ on the 
covergroup causes that lambda to be called and read the current 
value of the data to be sampled. 

B. Specifying Coverpoints and Bins 

Coverpoints and bins are specified in the covergroup class 
constructor. User-specified single bins and arrays of bins are 
supported. If no bins are specified, bins are automatically 
partitioned according to the auto-bin max. 

 
Figure 9 - Coverpoint Cross 

@vsc.randobj 
class my_base_s(object): 
 
     def __init__(self): 
         self.a = vsc.rand_bit_t(8) 
         self.b = vsc.rand_bit_t(8) 
 
     @vsc.constraint 
     def ab_c(self): 
        self.a < self.b 
 
item = my_base_s() 
for i in range(10): 
    with item.randomize_with() as it: 
        it.a == i 

 

@vsc.randobj 
 class my_item(object): 
 
     def __init__(self): 
         self.a = vsc.rand_bit_t(8) 
         self.b = vsc.rand_bit_t(8) 
 
     @vsc.constraint 
     def valid_ab_c(self): 
        self.a < self.b 
 
item = my_item() 
 
# Always generate valid values 
for i in range(10): 
   item.randomize() 
 
item.valid_ab_c.constraint_mode(False) 
 
# Allow invalid values 
for i in range(10): 
   item.randomize() 

 

@vsc.covergroup 
class my_covergroup(object): 
 
    def __init__(self): 
        self.with_sample( 
             a=vsc.bit_t(4) 
             ) 
        self.cp1 = vsc.coverpoint( 
            self.a, bins={ 
                "a" : vsc.bin(1, 2, 4), 
                "b" : vsc.bin(8, [12,15]) 
            }) 

 
 

 

@covergroup 
 class my_covergroup(object): 
 
     def __init__(self, a):  
         super().__init__() 
 
         self.cp1 = coverpoint(a, 
             bins=dict( 
                 a = bin_array([], [1,15]) 
             )) 
 a = 0; 
 cg = my_covergroup(lambda:a) 
 a=1 
 cg.sample() # Hit the first bin of cp1 

@vsc.covergroup 
class my_covergroup(object): 
 
  def __init__(self): 
    self.with_sample( 
      a=vsc.bit_t(4), 
      b=vsc.bit_t(4)) 
    self.cp1 = vsc.coverpoint(self.a, bins={ 
      "a" : vsc.bin_array([], [1,15]) 
    }) 
    self.cp2 = vsc.coverpoint(self.b, bins={ 
      "b" : vsc.bin_array([], [1,15]) 
    }) 
 
    self.cp1X2=vsc.cross([self.cp1, self.cp2]) 

 



Coverpoints crosses are also supported, as shown in Figure 
9. 

A summary of coverage features supported by PyVSC and 
SystemVerilog is shown below. 

Feature SystemVerilog PyVSC 

covergroup type Y Y 

coverpoint bins Y Y 

coverpoint ignore_bins Y N 

coverpoint illegal_bins Y N 

coverpoint single bin Y Y 

coverpoint array bin Y Y 

coverpoint auto bins Y Y 

coverpoint transition bin Y N 

cross auto bins Y Y 

cross bin expressions Y N 

cross explicit bins Y N 

cross ignore_bins Y N 

cross illegal_bins Y N 

 

V. ENVIRONMENT INTEGRATION 

The PyVSC library is environment independent and, for 
example, does not require the use of cocotb[7]. This 
independence allows PyVSC to integrate into any Python-based 
environment, but also imposes some overhead on the end user. 

Aside from the modeling layer used to express randomizable 
data, constraints, and coverage, PyVSC has two integration 
points with the environment: the random seed, and saving 
coverage data. Users of PyVSC must ensure that the random 
seed is properly configured, and that coverage data is properly 
saved before the environment exits. 

A. Random Seed Management 

Random generation is controlled by a seed, in order to ensure 
that results can be reproduced. PyVSC derives its randomization 
from the Python random package, so configuring the random-
package seed also sets the PyVSC seed.  

Some environments, such as cocotb [7], configure the global 
random seed based on user-specified environment variables 
and/or command-line options. In other cases, the random seed 
must explicitly be configured as part of the PyVSC environment 
integration. In these cases, the seed should be set directly, as 
shown in Figure 10.  

 
Figure 10 - Configuring the Random Seed 

 

B. Saving Coverage Data 

In most cases, coverage data must be converted to some 
textual or binary persistent form in order to make use of it 
outside the environment run in which it was collected. PyVSC 
provides several ways to access the collected coverage data. 

Properly retrieving and saving coverage data is the other key 
aspect to integrating PyVSC into an environment. 

 

 
Figure 11 - Reporting Functional Coverage Textually 

 
The report_coverage method, shown in Figure 11, creates a 

textual coverage report with information on all covergroup types 
and instances. By default, the coverage report is written to the 
console (stdout), as shown in Figure 12. The output of 
report_coverage can also be written to a file. 

 
Figure 12 - Example Textual Coverage Report 

PyVSC also provides the write_coverage_db method to save 
collected functional coverage data in Accellera Unified 
Coverage Interoperability Standard (UCIS) [8] format, as shown 
in Figure 13. 

 
Figure 13 - Saving Coverage Data in UCIS Format 

PyVSC also provides access to a coverage report as a Python 
object hierarchy, which can be used to produce a coverage report 
in a custom format. Showing how to use this mechanism for 
manipulating coverage data is beyond the scope of this paper. 

C. Example Integration 

One example of PyVSC usage is the Google RISC-V DV 
project [9]. The RISC-V DV project provides a random 
instruction-stream generator for the RISC-V ISA. The RISC-V 
DV project also defines functional coverage metrics to be 
collected on the result of running these randomly-generated 
programs. 

The project currently provides two primary implementations 
of randomization and functional coverage collection: a 
SystemVerilog model that uses the random solver and coverage 
collection mechanisms within a SystemVerilog-compliant 
simulator, and a pure-Python implementation using PyVSC.  

 
Figure 14 - RISC-V DV Flow 

Figure 14 shows the RISC-V DV flow. The random 
instruction-stream generator creates assembly-level test 

import random 

… 

random.seed(0) 

 

import vsc 

… 

vsc.report_coverage(details=True) 
 

import vsc 

… 

vsc.write_coverage_db("cov.xml") 

 

 
 



programs. These programs are compiled and executed by either 
an ISS or RTL model of a RISC-V processor. Test-program 
execution results in a series of execution-trace files which are 
processed and sampled by the functional coverage model to 
produce coverage data about the actual instructions that 
executed.  

The RISC-V DV Python flow creates approximately 50 
covergroups, and around 300 coverpoints and crosses. Coverage 
data is saved as a UCIS XML file.  

VI. WORKING WITH COVERAGE DATA 

Once coverage data has been collected, it can be displayed 
as a simple text report that shows the coverage achieved by each 
covergroup instance as well as the total coverage collected by all 
instances of a covergroup type. Coverage data can also be saved 
to a Unified Coverage Interchange Standard (UCIS) XML file 
for processing by other tools.  

 
Figure 15 - Coverage Data Visualized 

Figure 15 shows a graphical view of coverage data captured 
in UCIS XML format.  

VII. FUTURE WORK 

While PyVSC is currently in a usable state, there are features 
that are still on the near-term roadmap, as well as extensions to 
be considered.  The major areas of effort are listed below. 

A. Complete supporting SystemVerilog Constructs 

The highest priority for future work with PyVSC is to 
complete implementation of missing features that 
SystemVerilog supports. Currently, most of the constraint 
constructs are supported. More work exists to complete support 
of all functional coverage constructs. 

B. Beyond SystemVerilog 

Thus far, PyVSC has focused on achieving feature parity 
with the constraint and functional coverage constructs supported 
by SystemVerilog. But, supporting these features using a library 
in the context of a general-purpose programming language 
leaves open the possibility to go much further.  

Coverage and constraint constructs are built into the 
SystemVerilog language. While this makes them easily 
accessible as first-class language features, it also makes them 
difficult or impossible to use programmatically. One interesting 
direction to explore with PyVSC is the hybrid space where user-
specified constraints are programmatically processed to build 

more complex constraints. Because PyVSC constraint and 
coverage constructs are implemented in terms of Python 
language features, supporting programmatic enhancement of the 
existing constructs is natural. 

C. Performance Improvements 

PyVSC is a pure-Python library built on top of the Boolector 
SMT solver. Since the Boolector solver does most of the 
compute-bound work of constraint solving, PyVSC’s 
performance is quite good. That said, there are cases – 
specifically with arrays and iterative constraints – where 
Python’s interpreted nature leads to slower than desirable 
performance.  

A natural next step is to re-implement the core constraint and 
coverage data mode in C++ and expose it as a Python extension. 
Early experiments with this approach have shown significant 
performance improvements are possible in cases where the 
number of variables is significant.  

D. Integration Improvements 

As described in section V, PyVSC currently provides little 
or no environment-specific integration for specific 
environments. This keeps PyVSC free of dependencies on 
specific environments, but at the cost of requiring users to 
determine how to integrate PyVSC’s features with the services 
provided by the target environment. 

One area of future work is to enhance the integration 
between PyVSC and various existing verification environments, 
such as cocotb. 

VIII. CONCLUSION 

Randomization and functional coverage are key to industrial 
functional verification practice. PyVSC brings these features to 
Python in a form that will be familiar to SystemVerilog users. 
This boosts the capabilities of Python-based verification by 
making it easier for SystemVerilog practitioners to reuse their 
knowledge of constraints and coverage in Python.  
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