
Facilitating the Specification and Implementation
of Pipelined Designs with Skeletor

Ivan Rodriguez-Ferrandez1,2, Javier Barrera1,2, Jeremy Giesen1,2,
Alvaro Jover-Alvarez 1,2, Leonidas Kosmidis2,1

1Universitat Politècnica de Catalunya (UPC) 2Barcelona Supercomputing Center (BSC)

Abstract—Skeletor is an open source EDA tool which reduces
the bootstrap effort of new hardware designs. Skeletor facilitates
the design specification as well as its automatic translation to the
hierarchy of Verilog files, testbenches, synthesis and simulation
scripts. In its 1.5 version we added support for the pipelined
designs. In this paper, we describe the newly introduced feature
and show its benefits with two real-world examples.

I. INTRODUCTION

New hardware design projects come with a high associated
start up effort cost, which increases the entry bar of inex-
perienced hardware designers and decreases the productivity
of more seasoned designers. In particular, a new hardware
design project requires the creation of the source code files
containing the hierarchy of the components which make-up the
design, along with their defined interfaces, translated from the
design specification. As a matter of fact, based on our previous
experience reported in [1], the amount of code contained in
such files can measure up to 50% of the overall code of the
design, with only 50% of the code actually corresponding
to the implementation of the hardware logic. Moreover, a
new project needs the creation of testbenches for the test-
driven verification of each individual component or group
of components, as well as the top level design, and their
integration with synthesis and simulation tools.

Skeletor [1] is an open source EDA tool [2] which facilitates
the definition of the specification of a hardware design and
more importantly, it automates the tedious and error prone
translation of the design specification to the skeleton of Verilog
source code and testbench files. In this way, it helps to create
unambiguous, well-documented design specifications which
do not rely on developer’s interpretation of the specification
and allows hardware designers to focus only on what matters,
the implementation of the design. Skeletor is under active
development and currently supports both open source and pro-
prietary synthesis and simulation environments and includes
several user-friendly features.

The design specification can be described either in textual
form using the Skeletor specification language which is similar
to Verilog with C++ extensions [1], or in a visual way using
a powerful integration with the hierarchical schematics sup-
ported by the popular open source EDA tool KiCad [3]. In the
former case, syntax highlighting for the Skeletor language has
been added in popular editors and automatic KiCad schematic
generation is supported, for the documentation of the design.

In the latter case, that is if the user opts for the visual speci-
fication of the design using KiCad, the design specification in
the Skeletor description language is automatically generated,
without the need to learn its syntax at all.

In this paper we describe a new feature added in the latest
1.5 version of Skeletor, which facilitates the specification of
pipelined designs and allows their cleaner implementation. In
addition, it can be used to migrate non-pipelined designs to
pipelined ones with minimal changes. We provide concrete
examples showing the use and the advantages of this new
feature, which are provided in our open source repository as
artifacts for their tutorial value as well as for reproducibility
purposes.

II. PIPELINED DESIGNS

Pipelining is a widely used technique in hardware design,
which is mainly applied in order to reduce the critical path
of a circuit, so that a higher clock frequency can be achieved.
In its most basic form, the implementation of this technique
consists of inserting a flip-flop along the critical path of the
design, effectively splitting it in two paths of combinational
logic with lower timing constraints than the original one.

Unfortunately, timing information is not available at the
design specification time, therefore pipelining is frequently
introduced in a design during the implementation as a part
of an iterative process, which increases the complexity and
impacts the readability of the code. Thankfully, according to
a recent study [4], modern CAD tools are capable of automat-
ically implementing this optimisation, without the need of an
explicit description from the developer.

In addition to the improvement of the clock time, when
circuit pipelining is combined with explicit partitioning of
a design, it can allow additional architectural optimisations
such as higher utilisation from overlapping of operations in
time, reusing a functional unit across different operations, or
even turning off parts of a design when they are not used.
Unlike the previous example, in this case the implementation
of such features i.e. the pipeline flip-flops have to be present
in the design specification from the beginning, which again
complicates the logic implementation and understanding.

Skeletor, in its latest 1.5 version release, supports the flop
type specifier in the connections between modules, which
allows to define pipeline flip-flops in the design specification
description. This way, the pipeline flip-flops are explicitly

1 wire U3.wreg -> U5.wreg;
2 wire U4.m2reg -> U3.m2reg;
3 wire U4.wreg -> U3.wreg;
4 wire U3.m2reg -> U5.m2reg;
5 wire U4.wmem -> U3.wmem;
6 wire [BITS_REGFILE:0] U4.destination -> U3.destination;
7 wire [AddrSize-1:0] U4.aluresult -> U3.aluresult;
8 wire [AddrSize-1:0] U4.op2 -> U3.op2;
9 wire [AddrSize-1:0] U5.datareg -> U2.datareg;

10 wire [AddrSize-1:0] U1.instruction -> U2.instruction;
11 wire [AddrSize-1:0] U2.op1 -> U4.op1;
12 wire [AddrSize-1:0] U2.op2 -> U4.op2;
13 wire [AddrSize-1:0] U2.extendedimm -> U4.extendedimm;
14 wire [AddrSize-1:0] U3.dmemout -> U5.dmemout;
15 wire [BITS_REGFILE:0] U3.destination -> U5.destination;
16 wire [AddrSize-1:0] U3.aluresult -> U5.aluresult;
17 wire U5.wreg -> U2.wreg;
18 wire [BITS_REGFILE:0] U5.destination -> U2.destination;
19 wire U1.nextpc -> U1.pc;
20 wire U2.aluc -> U4.aluc;
21 wire U2.aluimm -> U4.aluimm;
22 wire U2.wreg -> U4.wreg;
23 wire U2.wmem -> U4.wmem;
24 wire [BITS_REGFILE:0] U2.destination -> U4.destination;
25 wire U2.m2reg -> U4.m2reg;

Figure 1: Excerpt of module connections in a Single Cycle
Processor Datapath Specification written in the Skeletor spec-
ification language.

1 flop U3.wreg -> U5.wreg;
2 flop U4.m2reg -> U3.m2reg;
3 flop U4.wreg -> U3.wreg;
4 flop U3.m2reg -> U5.m2reg;
5 flop U4.wmem -> U3.wmem;
6 flop [BITS_REGFILE:0] U4.destination -> U3.destination;
7 flop [AddrSize-1:0] U4.aluresult -> U3.aluresult;
8 flop [AddrSize-1:0] U4.op2 -> U3.op2;
9 flop [AddrSize-1:0] U5.datareg -> U2.datareg;
10 flop [AddrSize-1:0] U1.instruction -> U2.instruction;
11 flop [AddrSize-1:0] U2.op1 -> U4.op1;
12 flop [AddrSize-1:0] U2.op2 -> U4.op2;
13 flop [AddrSize-1:0] U2.extendedimm -> U4.extendedimm;
14 flop [AddrSize-1:0] U3.dmemout -> U5.dmemout;
15 flop [BITS_REGFILE:0] U3.destination -> U5.destination;
16 flop [AddrSize-1:0] U3.aluresult -> U5.aluresult;
17 flop U5.wreg -> U2.wreg;
18 flop [BITS_REGFILE:0] U5.destination -> U2.destination;
19 flop U1.nextpc -> U1.pc;
20 flop U2.aluc -> U4.aluc;
21 flop U2.aluimm -> U4.aluimm;
22 flop U2.wreg -> U4.wreg;
23 flop U2.wmem -> U4.wmem;
24 flop [BITS_REGFILE:0] U2.destination -> U4.destination;
25 flop U2.m2reg -> U4.m2reg;

Figure 2: Excerpt of module connections in a Multi-Cycle,
Pipelined Processor Datapath Specification written in the
Skeletor specification language.

Figure 3: Automatically generated KiCad schematic of the Single Cycle datapath of the processor design of Figure 1.

Figure 4: Automatically generated KiCad schematic of the Multi-Cycle, pipelined datapath of the processor design of Figure 2.
Notice the positive edge-triggered flip-flop symbol (∧) in the connection between the signals in the modules.

documented in the design specification, and their skeleton
code is automatically generated by Skeletor as positive edge-
triggered D flip-flops, eliminating possible human errors such
as wrongly specified sensitivity list, which is common in entry
level developers. Moreover, this feature minimises the code
to be written, since Skeletor takes care about the additional
wire definitions (of the Verilog reg type) and their connections.
Note that the generated Verilog code for the flip-flop skeleton
does not include an enable signal, so if this is required by the
implementation, it is up to the developer to introduce it.

Although the primary focus of this feature is the explicit
pipeline design at the design specification time, it can also be
used for the iterative pipeline design which was mentioned
at the beginning of the section. In that case, with appropriate
decomposition of the design in the module hierarchy, a data

path can be converted from a single cycle implementation to a
pipelined one with minimal changes. Moreover, a fine-grained
module decomposition in the specification, allows the designer
to experiment with various placements of pipeline flip-flops,
optimising the retiming of the design with minimal effort.

Next, we provide two examples which show how flop is
used for both aforementioned cases.

III. PIPELINED PROCESSOR DATAPATH EXAMPLE

In this example, we show how the data path design speci-
fication of a simple RISC-V processor can be converted from
a single cycle design to a pipelined one.

Figure 1 shows an excerpt of the Skeletor specification of
the simple processor design used in [1], which specifies the
connections between the modules comprising the processor

(a) Close-up of Figure 3. (b) Close-up of Figure 4.

Figure 5: Close-up of KiCad generated schematics.

1 module execute(AddrSize,BITS_REGFILE){
2 in clk;
3 in rst;
4 in wreg;
5 in m2reg;
6 in wmem;
7 in aluc;
8 in aluimm;
9 in [BITS_REGFILE:0] destination;

10 in [AddrSize-1:0] op1;
11 in [AddrSize-1:0] op2;
12 in [AddrSize-1:0] extendedimm;
13 out wreg;
14 out m2reg;
15 out wmem;
16 out [BITS_REGFILE:0] destination;
17 out [AddrSize-1:0] aluresult;
18 out [AddrSize-1:0] op2;
19

20 execute_1:U41(){
21 in rst = in rst,
22 in clk = in clk,
23 in wreg = in wreg,
24 in m2reg = in m2reg,
25 in wmem = in wmem,
26 in aluc = in aluc,
27 in aluimm = in aluimm
28 };
29

30 execute_2:U42(){
31 in rst = in rst,
32 in clk = in clk,
33 out wreg = out wreg,
34 out m2reg = out m2reg,
35 out wmem = out wmem
36 };
37

38 wire U41.wreg -> U42.wreg;
39 wire U41.m2reg -> U42.m2reg;
40 wire U41.wmem -> U42.wmem;
41 wire U41.aluc -> U42.aluc;
42 wire U41.aluimm -> U42.aluimm;
43 }

Figure 6: Single execution stage specification.

1 module execute(AddrSize,BITS_REGFILE){
2 in clk;
3 in rst;
4 in wreg;
5 in m2reg;
6 in wmem;
7 in aluc;
8 in aluimm;
9 in [BITS_REGFILE:0] destination;

10 in [AddrSize-1:0] op1;
11 in [AddrSize-1:0] op2;
12 in [AddrSize-1:0] extendedimm;
13 out wreg;
14 out m2reg;
15 out wmem;
16 out [BITS_REGFILE:0] destination;
17 out [AddrSize-1:0] aluresult;
18 out [AddrSize-1:0] op2;
19

20 execute_1:U41(){
21 in rst = in rst,
22 in clk = in clk,
23 in wreg = in wreg,
24 in m2reg = in m2reg,
25 in wmem = in wmem,
26 in aluc = in aluc,
27 in aluimm = in aluimm
28 };
29

30 execute_2:U42(){
31 in rst = in rst,
32 in clk = in clk,
33 out wreg = out wreg,
34 out m2reg = out m2reg,
35 out wmem = out wmem
36 };
37

38 flop U41.wreg -> U42.wreg;
39 flop U41.m2reg -> U42.m2reg;
40 flop U41.wmem -> U42.wmem;
41 flop U41.aluc -> U42.aluc;
42 flop U41.aluimm -> U42.aluimm;
43 }

Figure 7: Pipelined execution stage with two stages.

datapath. In this design, the connections between modules are
performed using the wire specifier. Note that the color code
of the listing matches the syntax highlighting template we
include for the sublime Text3 Editor [5]. Figure 3 shows the
automatically generated KiCad schematic of the datapath from
the Skeletor specification.

Figure 2 shows the corresponding Skeletor specification
excerpt for the same processor datapath, but with pipeline
flip-flops between its different modules, which now comprise
the datapath’s pipeline stages. Notice that the only difference
between the specifications is the replacement of the wire type
specifier in the connections with the flop type specifier.

Figure 4 shows the automatically generated schematic for
the pipelined version of the specification. Notice that again
the only difference between the schematics is the presence of
the positive edge-triggered flip flop (∧) between the module
connections, as it can be seen better in the close-up of the two
figures shown in Figure 5.

Obviously, the two designs have different control paths,
which are part of their implementation and therefore they are
not visible in the hierarchy specification descriptions, neither
in their corresponding schematics. In fact, the specification
shown in Figure 4 can be identical for both a multi-cycle
or fully pipelined processor, with the only difference in the
logic of their control path, assuming the absence of bypasses.
This is the main advantage of explicit pipeline specification
design; while as already mentioned modern CAD tools could
automatically insert pipeline flip-flops in order to increase the
maximum frequency of the processor, the resulting design will
be a multi-cycle processor but not a fully pipelined design as
considered by an architect, in which the execution of multiple
instructions are overlapped in time. The reason is that this
requires changes in the control path in order to stall the
pipeline in case of hazards, something that current CAD tools
lack the intelligence to do automatically.

IV. PROCESSOR RETIMING EXAMPLE

In this example, we consider the case of an existing design
already specified in Skeletor, where the designer wants to
increase its operational frequency. Let’s assume that after the
timing analysis of the processor datapath we examined in
the previous Section, the critical path of the design has been
identified in the processor’s Execution stage, which contains
only combinational logic.

Figure 6 shows the specification of this stage, which consists
of two modules. By modifying the connection between these
two modules using the flop type specifier instead of wire
as shown in Figure 7, allows to seamlessly introduce a new
pipeline stage, in order to reduce the critical path.

This operation can be repeated after a new timing analysis is
performed, inserting new pipeline stages between the various
modules and modifying if needed the control circuit of the
datapath, until the target frequency is reached.

V. RELATED WORK

Skeletor’s support for the easy definition of pipelines is not
a unique feature. To our knowledge, support for the seamless
integration of pipelines in HDL has been added first within
R&D activities at Intel Corporation. This work has been later
open sourced and resulted in the TLV-Comp open source
tool [6], maintained by TL-X.org, a special interest group for
extensions of HDLs for higher levels of abstraction, including
timing and transactions. The SandPiper tool [7] from Redwo-
ord EDA is a commercial version of the TLV-Comp which
supports the latest version of the TL-Verilog specification
(Transaction-Level Verilog). All these tools, currently support
only System Verilog similar to Skeletor.

Both TL-X tools and Skeletor support a similar rich set
of functionalities, such as integration with editors, visuali-
sation capabilities etc. However, their purpose is completely
different, so an apples-to-apples comparison between them
is not applicable. TL-Verilog is a full replacement of HDL
languages with integrated timing abstraction targeting design
implementation. On the other hand, Skeletor focuses on earlier
stages of hardware design, mainly on the design specification
and some automation regarding project bootstrapping.

In terms of pipelining support, the main difference between
Skeletor and TL-Verilog is that TL-Verilog allows the defini-
tion of pipeline stages anywhere within the logic implemen-
tation of a module file. However, Skeletor is limited to the
introduction of pipeline registers only between connections
of modules, not their implementation. That is, the Skeletor
assisted retiming possibilities for a design are limited to the
finer grained modules existing in the design hierarchy.

On the other hand, Skeletor is a fully open source tool
with active development. TLV-Comp has not received any
updates since its first release in March 2017, while SandPiper
is constantly maintained according to the latest advances in
the TL-X specification definitions, but it is not open source
and it is free only for open-source developments.

VI. CONCLUSION
We described the introduction of the flop type specifier in

the version 1.5 of Skeletor, which facilitates the definition
and implementation of pipelined designs. We have shown its
benefits with 2 examples, one regarding the conversion of
single cycle design to a pipelined one and one about logic
retiming of a design for achieving higher frequency. Finally,
we related this functionality with similar EDA tools.

ACKNOWLEDGMENTS
This work is partially supported by the Spanish Ministry

of Science and Innovation (MINECO) under grant PID2019-
107255GB and the HiPEAC Network of Excellence. Leonidas
Kosmidis is also funded by MINECO under a Juan de la Cierva
Formación postdoctoral fellowship (FJCI-2017-34095). The
authors would like to thank Guillem Cabo from BSC for his
technical and theoretical support and prof. Roger Espasa from
Universitat Politècnica de Catalunya, Esperanto Technologies
and Semidynamics, for his useful feedback regarding Skeletor
and his suggestions for the inclusion of the pipeline feature.

REFERENCES

[1] I. Rodriguez, G. Cabo, J. Giesen, J. Barrera, A. Jover, and L. Kos-
midis, “Skeletor Connector Language: Hierarchy Specification to HDL
Development Made Easy,” in Workshop on Open-Source EDA Technology
(WOSET), November 2019.

[2] ——, “Skeletor,” Sep. 2019. [Online]. Available: https://github.com/
jaquerinte/Skeletor

[3] Jean-Pierre Charras et al., KiCad Complete Reference Manual. 12th
Media Services. [Online]. Available: www.kicad-pcb.org

[4] Steve Hoover, “Retiming Study with TL Verilog.” [Online]. Available:
https://github.com/stevehoover/warp-v/blob/master/doc/retiming.md

[5] Sublime HQ, “Sublime Text.” [Online]. Available: https://www.
sublimetext.com

[6] TL-X.org, “TLV-Comp.” [Online]. Available: https://github.com/
ypyatnychko/tlv-comp

[7] Redwood EDA, “SandPiper.” [Online]. Available: https://www.
redwoodeda.com/products

https://github.com/jaquerinte/Skeletor
https://github.com/jaquerinte/Skeletor
www.kicad-pcb.org
https://github.com/stevehoover/warp-v/blob/master/doc/retiming.md
https://www.sublimetext.com
https://www.sublimetext.com
https://github.com/ypyatnychko/tlv-comp
https://github.com/ypyatnychko/tlv-comp
https://www.redwoodeda.com/products
https://www.redwoodeda.com/products

	Introduction
	Pipelined Designs
	Pipelined Processor Datapath Example
	Processor Retiming Example
	Related Work
	Conclusion
	References

