
LSOracle: Using Mixed Logic Synthesis in an Open Source ASIC Design Flow

Scott Temple, Walter Lau Neto, Max Austin, Xifan Tang, Pierre-Emmanuel Gaillardon
LNIS, University of Utah, Salt Lake City, Utah, USA

pierre-emmanuel.gaillardon@utah.edu

LSOracle is a free software logic synthesis tool that leverages
several types of underlying data structures and manipulation
methods, including And-Inverter Graphs and Majority-Inverter
Graphs to optimize highly heterogeneous circuit designs
automatically. It divides large designs at the module level and
selects the appropriate data structure and optimizer for each
module. It is available as a standalone tool, or as a Yosys
plugin, allowing easy integration with existing open source
EDA toolchains, and is capable of both ASIC and FPGA
synthesis. To demonstrate its capabilities, we present results
using LSOracle with the OpenROAD flow for ASIC synthesis,
targeting the BlackParrot benchmark and the Nangate45
library, both available in the OpenROAD repository. Using
LSOracle, delay is improved by up to 46% with negligible cost
in area and power. The tool is freely available at our GitHub
repository [1]

Index Terms—EDA, Logic Synthesis, VLSI , Open Source

I. INTRODUCTION

Realizing maximum performance in modern, complex
circuit designs requires both experienced engineers writing
efficient Register Transfer Level (RTL) code and advanced
tools for every portion of the Electronic Design Automation
(EDA) workflow. Logic synthesis, the conversion of a design
from RTL to an efficient gate level implementation, stands at
the top of the EDA toolchain, and is crucial to downstream
tools’ performance.

Logic synthesis may broadly be divided into two steps:
technology independent, which optimizes the logic of a design,
and technology dependent, which maps that logic onto a library
of gates while optimizing the mapping for some cost function.
Technology independent optimization typically consists of
transforming the RTL into a homogeneous Directed Acyclic
Graph (DAG) which describes the logic in terms of a single
boolean function and potentially inverted connections between
them. A variety of optimization approaches can then be applied
to the graph.

The most well known DAG for logic synthesis is the And-
Inverter Graph (AIG), which is the primary data structure
used in Berkeley ABC [2]. AIGs consist only of AND-of-
two nodes and edges connecting them. The edges may be
inverted, which is equivalent to a NOT gate. Research has
shown that the choice of Boolean function in the DAG impacts
the attainable optimization [3]. For example, Majority-Inverter
Graphs (MIGs), where each node represents the majority of
three function, have advantages over AIGs for optimizing
arithmetic logic [4]. XOR-And Graphs (XAGs) similarly
have benefits for arithmetic circuits and have applications in
hardware security [5]. However, every choice of data structure
is a compromise, and no single data structure is ideal for every
application.

This tension between optimization methods and circuit type
can be resolved by having an experienced engineer select
the right tool and settings to optimize each part of a design.

However, experienced engineers are at a premium in small
projects and academic settings, and manual intervention by
the designer adds considerable time to a project.

In this paper we demonstrate LSOracle, an open source
tool that allows simultaneous optimization using a variety of
DAGs for each design module automatically, and supports
using multiple DAGs even within a single design module.
This reduces the burden on the designer and speeds the
synthesis process. In most cases, LSOracle requires no designer
intervention and is transparent to the user.

The remainder of this paper is organized as follows: Section
II presents the details of the LSOracle architecture. Section III
discusses our integration of LSOracle with the OpenROAD
project and gives results for the BlackParrot benchmark using
our tool. Section IV concludes and gives a brief overview of
our development roadmap.

II. LSORACLE FLOW

LSOracle is available both as a standalone tool and as a
Yosys [6] plugin. In order to limit the discussion to LSOracle
itself, this section focuses on the standalone tool. The Yosys
plugin uses the same fundamental functionality, but passes
individual design modules into LSOracle for optimization and
techmapping, in an analagous way to how ABC is employed
in Yosys. Please see the Yosys documentation for details [7].

The fundamental LSOracle architecture is presented in Fig.
1. In broad terms, it consists of three steps: first, partitioning the
circuit (optional in the Yosys integration), second classifying
partitions for AIG or MIG optimization and performing the
optimization, and third, merging back into a cohesive network.

A. Step 1: Partitioning

To partition the DAG, it is first represented as a hypergraph;
i.e. a generalization of a graph where edges may connect
an arbitrary number of nodes, rather than exactly two, as
in a traditional graph. This is a convenient representation
for a logic network; nodes in the DAG are nodes in the
graph, and graph edges are the connections between them.
Partitioning is performed with a k-way hypergraph partitioning
algorithm; LSOracle currently supports KaHyPar[8] and a
parallel algorithm, GMetis[9]. Each node may belong to only
one partition, and partitions are chosen to be as independent
as possible, with minimal connection between them. This
helps alleviate the loss of global optimization that can occur
if related logic is separated across multiple partitions.

B. Step 2: Classification and Optimization

After partitioning, LSOracle determines the DAG to use for
each partition, using either a technology independent heuristic
or an experimental neural network based classifier. AIG and
MIG data structures are fully supported, with XAG currently



Fig. 1. LSOracle structure, showing partitioning, classification, optimization,
and merging steps. In Yosys integration, each design module is passed from
Yosys to this flow as the ”original logic network.” Using the Yosys flow,
partitioning is optional because the design has already been broken into
design modules.

an experimental feature. Results in this work were obtained
using the heuristic classifier: Each partition is duplicated
into a small, independent network, and optimization for each
method is performed with a series of rewriting, refactoring,
and balancing steps, similar to the resyn2 command in ABC.
The product of the number of nodes and the logic depth of
the DAG after optimization is used as the metric to determine
which classifier to use, although there are options for the
user to weight network size or network depth more heavily.
We have observed empirically that technology independent
network size and depth correlate to area and delay, respectively,
later in the design process. This heuristic is chosen to attempt
to provide a balanced optimization, which does not allow
network size to grow too much in order to improve clock
speed, or vice versa.

C. Step 3: Merging

After selecting the best network in the classification step,
the unused network is discarded, and the chosen partition is
merged back into the network. LSOracle keeps track of the
inputs and outputs of each partition, so to merge the optimized
partition, the inputs and outputs of the original network can
simply be redirected to the duplicate, optimized network. This
will leave the unoptimized nodes unconnected, and a cleanup
function can remove them. The optimization and merging is
done in two operations: AIG partitions are merged, the merged
network is converted to MIG, and MIG partitions are merged.
This is done because the AND operation can be represented
as a MAJ gate by adding a constant input, but not vice-versa,
making it impossible to merge MIG partitions into an AIG
network without adding gates.

III. OPENROAD INTEGRATION

In this section we demonstrate an integration of LSOracle
with other open source tools to create a complete ASIC flow.
We then test the integration with a modern, complex benchmark

TABLE I
POST PLACEMENT AND ROUTING PPA FOR UNMODIFIED BLACKPARROT

DESIGN USING INDICATED OPTIMIZATION

Area (µm2) Delay (ps) Power (mW)
Original 20003518 8.29 5.52e+02
With ABC resyn2 20004068 10.61 5.52e+02
With ABC resyn2rs 20004586 10.62 5.52e+02
With LSOracle 20004708 6.61 5.52e+02
Improvement over Original -0.01% 22.55% 0.00%
Improvement over resyn2 -0.003% 46.46% 0.00%
Improvement over resyn2rs -0.004% 46.55% 0.00%

TABLE II
POST PLACEMENT AND ROUTING PPA FOR MODIFIED BLACKPARROT

DESIGN ALLOWING FUNCTIONAL VERIFICATION

Area (µm2) Delay (ps) Power (mW)
Original 20003450 8.33 5.52e+02
With ABC resyn2 20004326 10.68 5.52e+02
With ABC resyn2rs 20004512 10.55 5.52e+02
With LSOracle 20004326 7.16 5.52e+02
Improvement over Original -0.004% 15.11% 0.00%
Improvement over resyn2 0.00% 39.46% 0.00%
Improvement over resyn2rs 0.00093% 38.28% 0.00%

and evaluate the impact of LSOracle on Power, Performance,
and Area (PPA) after placement and routing.

A. Toolchain and Benchmarks

To demonstrate interoperability with other open source
tools, we integrated LSOracle within the OpenROAD flow.
OpenROAD is an open source suite for ASIC synthesis from
RTL to GDS, including static timing analysis, placement,
routing, clock tree synthesis, etc [10]. The OpenROAD flow
uses Yosys for verilog parsing, logic synthesis, and technology
mapping. In order to demonstrate the interoperability of
LSOracle with other open source tools, and the performance
benefits available, we integrated LSOracle into the OpenROAD
flow to improve the logic synthesis.

OpenROAD’s default flow performs no logic synthesis,
using only trivial optimizations available in Yosys and using
ABC within Yosys only for technology mapping. In order to
show the benefits of adding more sophisticated optimization
methodologies, we modified the OpenROAD flow to use an
ABC optimization script (resyn2 and resyn2rs) and to use the
LSOracle plugin’s high effort approach after Yosys’ generic
synthesis but prior to tech-mapping. ASIC tech mapping was
performed using ABC in all tests.

B. Results

Tables I and II show the results of this integration using the
BlackParrot benchmark [11] and Nangate45 library included in
the OpenROAD public repository after placement and routing.
In the original BlackParrot design, shown in Table I, we
see improvements in delay of 22.55% over the original flow
and of about 46% over both ABC optimization scripts, while
showing negligible difference in area or power after placement
and routing. Note that adding additional optimization scripts
with ABC degrades performance; this is unusual, and a longer
discussion follows. However, it is likely because only relatively
small changes were made to the DAG, and post-technology
mapping results do not correlate perfectly to technology
independent network size.



TABLE III
TECHNOLOGY INDEPENDENT RESULTS FOR ORIGINAL BLACKPARROT

DESIGN

Before After
Nodes Depth Nodes Depth

ABC resyn2 243049 AND 1031 215721 AND 1023
ABC resyn2rs 243049 AND 1031 214258 AND 1023
LSOracle high effort 243049 AND 1031 221700 MAJ 520

To verify these results, we successfully performed functional
verification using a testbench and simulation script provided
to us by the BlackParrot team. This simulation required a
slightly modified BlackParrot design, however, which was
also supplied to us. This updated design had ports moved up
in the design hierarchy so that the testbench could have access
to them.

The same test described above was run on this updated
design, and the results are shown in table II. With this modified,
testable design, we were able to achieve a 15.11% improve-
ment in delay over the original flow and an approximately
39% improvement over ABC optimization post placement and
routing. This broadly agrees with the results in the original
design. Some loss of performance is expected because the
modifications both increase the total size of the network
and complicate the topology, changing both partitioning and
optimization.

Because it was unexpected that optimization with ABC
did not improve performance after placement and routing,
we investigated technology independent performance of each
optimizer on the unmodified design; these results appear in
Table III. AIG optimization using ABC reduced network size
by up to 12% and depth by 1%. LSOracle improved network
size by 9% and depth by 49%. Because LSOracle uses MAJ,
rather than AND nodes, a one to one comparison is not
possible. However, it is clear that the large reduction in network
depth correlates with a reduction in delay. This correlation is
not perfect, however, as shown by the AIG results and the
slight increase in area seen with LSOracle. The technology
mapper’s performance has a dependence on network structure
that cannot be completely reduced to node count and logic
depth. In this case, the original network has a structure which
performs well with the technology mapper, outweighing the
benefits seen by AIG optimization alone.

IV. CONCLUSION

In this paper, we presented LSOracle and demonstrated the
benefits that it can bring to an open source toolchain. We
integrated our tool into an ASIC flow using OpenROAD, with
more than 20% improvement in clock speed, and minimal cost
in area and power on the BlackParrot benchmark. This was
accomplished with no manual designer intervention; usage of
the modified OpenROAD flow is identical from an end user
perspective.

LSOracle is available on GitHub under the MIT license [1].
It is available both as a stand alone tool and as a Yosys plugin.
Although this work showcased ASIC synthesis, LSOracle can
also be used in FPGA toolchains, and has been tested with
VTR [12] and OpenFPGA [13]. Ongoing work includes a
cloud based version, full support for timing driven synthesis
and resynthesis, and a variety of hardware security features.

REFERENCES

[1] “Lsoracle.” [Online]. Available: https://github.com/LNIS-
Projects/LSOracle

[2] B. L. Synthesis and V. Group, “Abc: A system for
sequential synthesis and verification,” 2018. [Online]. Available:
http://www.eecs.berkeley.edu/ alanmi/abc/

[3] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “Majority-
inverter graph: A novel data-structure and algorithms for
efficient logic optimization,” in Proceedings of the 51st Annual
Design Automation Conference. ACM, 2014, pp. 1–6.

[4] L. Amaru, P.-E. Gaillardon, and G. De Micheli, “Majority-
inverter graph: A new paradigm for logic optimization,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 35, no. 5, pp. 806–819, 2016.

[5] E. Testa, M. Soeken, L. Amarù, and G. D. Micheli, “Reducing
the multiplicative complexity in logic networks for cryptography
and security applications,” in 2019 56th ACM/IEEE Design
Automation Conference (DAC), June 2019, pp. 1–6.

[6] C. Wolf, J. Glaser, and J. Kepler, “Yosys-a free verilog synthesis
suite,” in Proceedings of the 21st Austrian Workshop on
Microelectronics (Austrochip), 2013.

[7] C. Wolf, “Yosys manual.” [Online]. Available:
http://www.clifford.at/yosys/files/yosys manual.pdf

[8] S. Schlag, V. Henne, T. Heuer, H. Meyerhenke, P. Sanders, and
C. Schulz, “k-way hypergraph partitioning via n-level recursive
bisection,” in 18th Workshop on Algorithm Engineering and
Experiments, (ALENEX 2016), 2016, pp. 53–67.

[9] X. Sui, D. Nguyen, M. Burtscher, and K. Pingali, “Parallel
graph partitioning on multicore architectures,” vol. 6548, 12
2010, pp. 246–260.

[10] T. Ajayi, V. A. Chhabria et al., “Toward an open-source digital
flow: First learnings from the openroad project,” in Proceedings
of the 56th Annual Design Automation Conference 2019, ser.
DAC ’19. New York, NY, USA: Association for Computing
Machinery, 2019.

[11] Z. Azad, L. Delshadtehrani et al., “The blackparrot processor:
An open-source industrial-strength rv64g multicore processor,”
2019.

[12] J. Luu, J. Goeders et al., “Vtr 7.0: Next generation architecture
and cad system for fpgas,” ACM Trans. Reconfigurable
Technol. Syst., vol. 7, no. 2, Jul. 2014. [Online]. Available:
https://doi.org/10.1145/2617593

[13] X. Tang, E. Giacomin, B. Chauviere, A. Alacchi, and P.-E.
Gaillardon, “Openfpga: An opensource framework for agile
prototyping customizable fpgas,” IEEE Micro, vol. PP, pp. 1–1,
05 2020.

ACKNOWLEDGEMENTS

This material is based on research sponsored by Air Force Research
Laboratory (AFRL) and Defense Advanced Research Projects Agency
(DARPA) under agreement number FA8650-18-2-7849. The U.S.
Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation
thereon.

The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of
Air Force Research Laboratory and Defense Advanced Research
Projects Agency or the U.S. Government.


