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Abstract—This open-source toolset enables targeting and de-
sign of the fine-grain SoC Large-scale Field Programmable
Analog Array (FPAA) family of devices, similar to tools enabling
FPGA devices. The SoC FPAA tool framework is presented,
following a discussion of the resulting analog abstraction, FPAA
infrastructure, and resulting educational and research impact.

I. THE NEED FOR FPAA TARGETING TOOLS

The programmability and configurability of digital com-
putation as seen in FPGAs has enabled ubiquitous digital
computation. Widely available digital design tools enables this
programmability. FPGA tools come from FPGA manufactur-
ers, open-source tools (e.g. [1]), and tools compiling from
higher-level languages to commercial FPGAs.

This effort presents an integrated open-source mixed-signal
toolset for compiling the SoC large-scale Field Programmable
Analog Arrays (FPAA) (e.g. [2]), potentially enabling ubiqui-
tous analog or mixed-signal low-power sensor to processing
devices in a manner similar to FPGA devices. These tools
abstract some low-level details enabling system design and
application engineers to design on the FPAA using a set of
user-friendly, high-level tools (e.g. graphical) for a wide range
of energy efficient applications (Fig. 1). Analog design tools
are limited, looking at particular space of simulation (e.g.
[3]), macromodeling techniques (e.g. [4], [5]), over leveraged
digital tools (e.g. [6]), or automation for a minority of analog
designers rather than system designers (e.g. [7]).

The hope for programmable and configurable analog and
mixed-signal devices has been at least as strong if not stronger
than the original drive for digital reconfigurability. Analog
computing techniques result in 1000× improvement in power
or energy efficiency, and a 100× improvement in area effi-
ciency, compared to digital computation as Mead originally
predicted [8]. For example, an SoC FPAA implemented a
command-word acoustic classifier (spectral classification) with
hand-tuned weights, achieving command-word recognition in
less than 23µW with standard digital interfaces [9]. The full
classification results in less than 1µJ per classification (or
inference), which has 1000× improvement over similar digital
neuromorphic solutions requiring roughly 1mJ or higher for
just an inference (e.g. [10]). The SoC FPAA interdigitates
analog and digital computation in the same routing fabric.

Physical FPAA implementations drove the development for
analog and mixed signal design tools (Fig. 1), particularly the
SoC FPAA implementation, as well as FPAA ICs leading up
to the SoC FPAA devices [11], [12], [13]. These tools give
the user the ability to create, model, and simulate analog and
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Fig. 1. The open-source FPAA tool infrastructure drives the opportunities
and development of the SoC large-scale Field Programmable Analog Array
(FPAA) devices. Innovations in FPAA hardware, innovations and develop-
ments in FPAA tool structure as well as innovations in the bridges between
them are essential for the SoC FPAA infrastructure.

digital designs. High-level design tools (Fig. 1) have been
essential to the SoC FPAA development (Fig. 1). The SoC
FPAA tools and PC board infrastructure are openly available as
open-source tools1. A standard tool and infrastructure platform
enables faster utilization and development of next generation
FPAA applications. This tool framework is directly applicable
to other FPAA devices (e.g. [14], [15], [16]), and we encourage
an open community in these directions.

This discussion starts with the SoC FPAA tool infrastruc-
ture, including FPAA tool framework (Section II) and Analog
Abstraction (Section III). SoC FPAA infrastructure (Section
IV) includes FG programming, and PC board infrastructure,
through system enabling technologies as calibration and built-
in self test methodologies. These tools are currently used at
GT for education and research, and the authors would welcome
the opportunity to demonstrate these tools at the meeting.

II. ANALOG TOOLS AND THE SOC FPAA TOOLSET

Tools are essential for FPAA system design. While identify-
ing every switch is easier than IC layout, design, verification,

1Tools can be downloaded at http://hasler.ece.gatech.edu/FPAAtool/index.html
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Fig. 2. Open-Source Toolflow to compile a high-level Mixed-Signal representation to a switch list that can be targeted on an SoC FPAA. (a) The high-level
representation is defined in Scilab / Xcos, and compiled through x2c tool that uses a number of GT open-source tools as well as other open-source tools (e.g.
VPR, VTR). The tools allow for high-level simulation as well as circuit level simulation in the Scilab / Xcos interface. (b) The FPAA computing architecture
enables computing in the routing as well as in the CAB (Computational Analog Blocks) or CLB, requiring further tool efforts for targeting and design. A
Basic FPAA also includes CAB (Computational Analog Blocks) or CLB and Routing. The FG enabled routing crossbar are excellent switches, as well as
enabling computing in the routing as a result of analog programming. Unlike FPGAs, all switches in some FG enabled FPAA devices are potential places of
computation. FG stores a charge, Q, at the floating node, allowing storage of analog voltages that can be inside or outside the power supplies (GND, Vdd).

fabrication, and testing for analog IC engineers, system de-
signers will expect higher-level capabilities. The current SoC
FPAA [9] utilizes 600,000 analog programmable Floating-
Gate (FG) parameters in 350nm CMOS. Most of these de-
signers do not want to know about transistors and analog
transistor circuits, and yet the tools must enable efficient
use by analog IC designers to enable blocks for application
designers. Tools are essential for application-based system
design using physical systems, given the modern comfort with
structured and automated digital design from code to working
application.

This open-source tool platform (Fig. 2) creates an integrated
environment running in Scilab/Xcos [30] integrating developed
tools with modified open-source digital place and route (VPR
[1]) tools. x2c converts high-level block description by the user
to blif format, inputs to the modified VPR tool, and utilizes
vpr2swcs to a switch list directed by an IC architecture file.
An open-source Ubuntu 12.04 Virtual Machine (VM) abstracts
the entire tool flow, from Scilab/Xcos, device library files,
through sci2bliff, vpr2swcs, and modified VPR tools. The core
tools are updated inside the VM2.

High-level design tools (Fig. 2), implemented in Scilab

2The updated tool core GIT repo: https://github.com/jhasler/rasp30. One
can make their own linux-based toolflow with this link

/ Xcos, enable automated compilation to a switch list, the
description of the programmed FPAA hardware. The graphical
high level tool uses a palette for available blocks that compile
down to a combination of digital and analog hardware blocks,
as well as software blocks on the resulting processor. The
tools are designed to enable a non-circuits expert, like a sys-
tem applications engineer, to investigate particular algorithms.
They enable system level design (level=1) and circuit level
design (level=2) (e.g. [13]), including both FPAA targeting and
simulation [17]. Tools enable physical noise modeling (e.g.
[13]) allowing for simulated prediction of the effect of noise
on a compiled system as well as the resulting system SNR.
The architecture files specify the analog–digital IC details. The
result is a rich set of open analog and digital blocks that is
available for wider utilization and contribution.

The SoC FPAA enables computation both in the Compu-
tational Blocks (CAB for Analog and CLB for Logic) as
well as in the routing fabric, singificantly increasing the fine
granularity and resulting FPAA functionality, while increasing
the tool complexity. Analog FG devices provide both the
FPAA memory elements as well as the FPAA routing elements.
The fabric switches use a single FG pFET device that can
be programmed in an analog manner, enabling computation
in routing fabric (e.g. Vector-Matrix Multiplication) as well



Fig. 3. Illustration of the open-source FPAA tools operating in an Ubuntu 12.04 VM.

as CAB elements [18], Computation in FPAA fabric repre-
sents a dramatic departure from classical FPGA architectures
(Fig. 2b). The FPAA computes in the co-located memory
space of switches. Multiple stages of the place and route
infrastructure are modified to enable this functionality.

III. TOOLS ENABLING ABSTRACTION

Tools open the space for abstraction. The multiple levels
of analog abstraction in a typical implementation (Fig. 4) can
be abstracted from the designer who only needs to use higher
level blocks ( blocks in measurement setup of Fig. 4). Figure
4 shows a typical use of the C4 block in an acoustic front-end
for creating sub banded outputs. The core computational chain,
C4 Bandpass filter + Amp Detect + LPF, all compiles into a
single CAB. FG elements (e.g. FG enabled OTA elements),
as well as tunable capacitor banks, enable this abstraction and
can be tuned around mismatches (e.g. [19]). The abstraction
includes computation and testing instrumentation blocks into a
single complete compiled system. This measurement illustrates
the measure voltage block, effectively a slow speed (200SPS),
high-resolution (14-bit) voltage measurement. The structure
uses the FG programming circuitry, including the 14-bit mea-
surement ramp ADC, still available in run mode. These blocks
abstract further at the sub band processing stage as the front-
end of an acoustic classifier (e.g. [9]). With the higher level
of abstraction, handling the co-design issue between at least
analog code, digital code, and µP code becomes immediately
apparent. Tools should enable designers to effectively and
efficiently design through the large number of open questions
in this analog–digital codesign space.

IV. SOC FPAA HARDWARE INFRASTRUCTURE

The FPAA structure uses an open-source board design3

connected (through USB) to a laptop with the Virtual Machine
and FPAA tools. The SoC FPAA programs the FG elements
from the switch list using the µP. The programming appears
as simple as downloading code libraries (e.g. python, Java)
to stream the device data through the TCL framework used
by the design tools. Programmable subthreshold and above
threshold current sources are routinely programmed over six
orders of magnitude (e.g. 30pA to 30µA) with better than 1
percent accuracy at all values including subthreshold current
levels [20]. The interface board uses a single USB interface for
power and resulting infrastructure for SoC FPAA devices [21],
[22], enabling a range of user approaches, including FPAA
devices that can be powered, programmed, and controlled
through Android devices [23], or a remote FPAA infrastructure
controlled through a simple unix platform using a POP email
server controlled through open-source Python code [24].

V. SUMMARY

The open-source FPAA design tools enable design from
high-level synthesis to gate/transistor design as well as compi-
lation to configurable hardware, starting a path well understood
today by FPGA devices. The goal is to empower a large
community utilizing these FPAA devices, contributing to a
number of commercial and open-source communities, empow-
ered through common tool frameworks. The authors want to
encourage user communities towards developing a wide library
of analog and digital components as well as solving application
problems. These tools were developed along-side educational

3Board designs are available at http://hasler.ece.gatech.edu/PCboards/index.html
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Fig. 4. An example of the analog level abstraction for an acoustic subband computation. In addition to the measurement blocks, each with their own level
of abstraction, the computation requires abstractions for a scanner block, measurement infrastructure, compiled digital blocks, and assembly language code.

efforts to enable experimentally measurable mixed-signal de-
sign opportunities as well as reducing or eliminating the need
for additional benchtop test equipment other than an FPAA
board ([25], [26], [27], [22]. These techniques were used in
a first undergraduate transistor circuits course [28], [29]. The
open-source tools opens further commercial and educational
applications upon commercial availability of FPAA devices.
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