
An Open-Source ToolSet for FPAA Design
Jennifer Hasler and Aishwarya Natarajan

Electrical and Computer Engineering
Georgia Institute of Technology, Atlanta, U.S.A.

jennifer.hasler@ece.gatech.edu

Abstract—This open-source toolset enables targeting and de-
sign of the fine-grain SoC Large-scale Field Programmable
Analog Array (FPAA) family of devices, similar to tools enabling
FPGA devices. The SoC FPAA tool framework is presented,
following a discussion of the resulting analog abstraction, FPAA
infrastructure, and resulting educational and research impact.

I. THE NEED FOR FPAA TARGETING TOOLS

The programmability and configurability of digital com-
putation as seen in FPGAs has enabled ubiquitous digital
computation. Widely available digital design tools enables this
programmability. FPGA tools come from FPGA manufactur-
ers, open-source tools (e.g. [1]), and tools compiling from
higher-level languages to commercial FPGAs.

This effort presents an integrated open-source mixed-signal
toolset for compiling the SoC large-scale Field Programmable
Analog Arrays (FPAA) (e.g. [2]), potentially enabling ubiqui-
tous analog or mixed-signal low-power sensor to processing
devices in a manner similar to FPGA devices. These tools
abstract some low-level details enabling system design and
application engineers to design on the FPAA using a set of
user-friendly, high-level tools (e.g. graphical) for a wide range
of energy efficient applications (Fig. 1). Analog design tools
are limited, looking at particular space of simulation (e.g.
[3]), macromodeling techniques (e.g. [4], [5]), over leveraged
digital tools (e.g. [6]), or automation for a minority of analog
designers rather than system designers (e.g. [7]).

The hope for programmable and configurable analog and
mixed-signal devices has been at least as strong if not stronger
than the original drive for digital reconfigurability. Analog
computing techniques result in 1000× improvement in power
or energy efficiency, and a 100× improvement in area effi-
ciency, compared to digital computation as Mead originally
predicted [8]. For example, an SoC FPAA implemented a
command-word acoustic classifier (spectral classification) with
hand-tuned weights, achieving command-word recognition in
less than 23µW with standard digital interfaces [9]. The full
classification results in less than 1µJ per classification (or
inference), which has 1000× improvement over similar digital
neuromorphic solutions requiring roughly 1mJ or higher for
just an inference (e.g. [10]). The SoC FPAA interdigitates
analog and digital computation in the same routing fabric.

Physical FPAA implementations drove the development for
analog and mixed signal design tools (Fig. 1), particularly the
SoC FPAA implementation, as well as FPAA ICs leading up
to the SoC FPAA devices [11], [12], [13]. These tools give
the user the ability to create, model, and simulate analog and

Further
Compatible

SoC FPAA ICs

FG Programming
on SoC FPAA

High-Level
FPAA Tools

FPAA
Education

Remote
SoC FPAA

Built-in
Self Test

Analog
Tools

Scaling
SoC FPAA

PC Board
Infrastructure

Low-Level
FPAA Tools

FP
A

A
 T

oo
ls

FP
A

A

 H
ar

dw
ar

e

Hardware
Abstraction
(calibration,
mismatch)

SRAM

MSP430

SoC FPAA

Open-Source FPAA ToolSet

Fig. 1. The open-source FPAA tool infrastructure drives the opportunities
and development of the SoC large-scale Field Programmable Analog Array
(FPAA) devices. Innovations in FPAA hardware, innovations and develop-
ments in FPAA tool structure as well as innovations in the bridges between
them are essential for the SoC FPAA infrastructure.

digital designs. High-level design tools (Fig. 1) have been
essential to the SoC FPAA development (Fig. 1). The SoC
FPAA tools and PC board infrastructure are openly available as
open-source tools1. A standard tool and infrastructure platform
enables faster utilization and development of next generation
FPAA applications. This tool framework is directly applicable
to other FPAA devices (e.g. [14], [15], [16]), and we encourage
an open community in these directions.

This discussion starts with the SoC FPAA tool infrastruc-
ture, including FPAA tool framework (Section II) and Analog
Abstraction (Section III). SoC FPAA infrastructure (Section
IV) includes FG programming, and PC board infrastructure,
through system enabling technologies as calibration and built-
in self test methodologies. These tools are currently used at
GT for education and research, and the authors would welcome
the opportunity to demonstrate these tools at the meeting.

II. ANALOG TOOLS AND THE SOC FPAA TOOLSET

Tools are essential for FPAA system design. While identify-
ing every switch is easier than IC layout, design, verification,

1Tools can be downloaded at http://hasler.ece.gatech.edu/FPAAtool/index.html

ANALOG
blif (netlist)

DIGITAL
blif /verilog

ASSEMBLY
.asm

Program IC

CIRCUIT

Compile to
switches

Compile to
switches Compile to

Hex code

Analog-Digital-Assembly CoDesign

Technology
 File for
different

ICs

(.xml) (.py)

Post-processing
VPR o/p

Local interconnect
Routing and handling

Macroblocks

Switch address
generation

123 341 10e-09 2

223 341 0 0
305 123 0 0

917 111 20e-09 1

row column Current Switch

.subckt ota in[0]=net1 in[1]=net2 out[0]=out1 #ota_bias= 10e-9

OTA

Pin0: in[0]

Pin1: in[1]

Pin3 OTA
Pin3: out[0]

Pin1

Pin2

(Xcos)

Vdd

GND
10nA

net1 9 0 0 #tgate[0]
net2 11 0 0 #int[0]
out:out1 12 0 0 #ana_buf[0]

I/O
DAC
Analog buffer

Compiler Scripts

Program IC

.hex

Analog / Mixed-Signal
Xcos Circuit (Level=1)

(.xcos)

XCOS Library
(.sce) sci2blif VTR

(Verilog)

Integrate blif Files
(analog + digital)

Netlist (.blif) + I/O (.pads)

Analog
blif

Digital
blif

Analog Blif Format Extension

Python W
rapper

Pin Format Examples

VPR

Netlist (.net)
Placement (.place)
Route (.route)

vpr2swcs

Switch List
 (.swcs)

Part of Switch List

CAB / CLB

Routing

Basic
FPAA

FG enabled FPAA Concept

GND GND

GND GND

FG Routing Crossbar

Analog FG Prog VMM

Vg

Vtun Vd

Vs

Q

Floating
Node

Analog Values
Vfg < GND or Vfg > Vdd

(a) (b)
Fig. 2. Open-Source Toolflow to compile a high-level Mixed-Signal representation to a switch list that can be targeted on an SoC FPAA. (a) The high-level
representation is defined in Scilab / Xcos, and compiled through x2c tool that uses a number of GT open-source tools as well as other open-source tools (e.g.
VPR, VTR). The tools allow for high-level simulation as well as circuit level simulation in the Scilab / Xcos interface. (b) The FPAA computing architecture
enables computing in the routing as well as in the CAB (Computational Analog Blocks) or CLB, requiring further tool efforts for targeting and design. A
Basic FPAA also includes CAB (Computational Analog Blocks) or CLB and Routing. The FG enabled routing crossbar are excellent switches, as well as
enabling computing in the routing as a result of analog programming. Unlike FPGAs, all switches in some FG enabled FPAA devices are potential places of
computation. FG stores a charge, Q, at the floating node, allowing storage of analog voltages that can be inside or outside the power supplies (GND, Vdd).

fabrication, and testing for analog IC engineers, system de-
signers will expect higher-level capabilities. The current SoC
FPAA [9] utilizes 600,000 analog programmable Floating-
Gate (FG) parameters in 350nm CMOS. Most of these de-
signers do not want to know about transistors and analog
transistor circuits, and yet the tools must enable efficient
use by analog IC designers to enable blocks for application
designers. Tools are essential for application-based system
design using physical systems, given the modern comfort with
structured and automated digital design from code to working
application.

This open-source tool platform (Fig. 2) creates an integrated
environment running in Scilab/Xcos [30] integrating developed
tools with modified open-source digital place and route (VPR
[1]) tools. x2c converts high-level block description by the user
to blif format, inputs to the modified VPR tool, and utilizes
vpr2swcs to a switch list directed by an IC architecture file.
An open-source Ubuntu 12.04 Virtual Machine (VM) abstracts
the entire tool flow, from Scilab/Xcos, device library files,
through sci2bliff, vpr2swcs, and modified VPR tools. The core
tools are updated inside the VM2.

High-level design tools (Fig. 2), implemented in Scilab

2The updated tool core GIT repo: https://github.com/jhasler/rasp30. One
can make their own linux-based toolflow with this link

/ Xcos, enable automated compilation to a switch list, the
description of the programmed FPAA hardware. The graphical
high level tool uses a palette for available blocks that compile
down to a combination of digital and analog hardware blocks,
as well as software blocks on the resulting processor. The
tools are designed to enable a non-circuits expert, like a sys-
tem applications engineer, to investigate particular algorithms.
They enable system level design (level=1) and circuit level
design (level=2) (e.g. [13]), including both FPAA targeting and
simulation [17]. Tools enable physical noise modeling (e.g.
[13]) allowing for simulated prediction of the effect of noise
on a compiled system as well as the resulting system SNR.
The architecture files specify the analog–digital IC details. The
result is a rich set of open analog and digital blocks that is
available for wider utilization and contribution.

The SoC FPAA enables computation both in the Compu-
tational Blocks (CAB for Analog and CLB for Logic) as
well as in the routing fabric, singificantly increasing the fine
granularity and resulting FPAA functionality, while increasing
the tool complexity. Analog FG devices provide both the
FPAA memory elements as well as the FPAA routing elements.
The fabric switches use a single FG pFET device that can
be programmed in an analog manner, enabling computation
in routing fabric (e.g. Vector-Matrix Multiplication) as well

Fig. 3. Illustration of the open-source FPAA tools operating in an Ubuntu 12.04 VM.

as CAB elements [18], Computation in FPAA fabric repre-
sents a dramatic departure from classical FPGA architectures
(Fig. 2b). The FPAA computes in the co-located memory
space of switches. Multiple stages of the place and route
infrastructure are modified to enable this functionality.

III. TOOLS ENABLING ABSTRACTION

Tools open the space for abstraction. The multiple levels
of analog abstraction in a typical implementation (Fig. 4) can
be abstracted from the designer who only needs to use higher
level blocks (blocks in measurement setup of Fig. 4). Figure
4 shows a typical use of the C4 block in an acoustic front-end
for creating sub banded outputs. The core computational chain,
C4 Bandpass filter + Amp Detect + LPF, all compiles into a
single CAB. FG elements (e.g. FG enabled OTA elements),
as well as tunable capacitor banks, enable this abstraction and
can be tuned around mismatches (e.g. [19]). The abstraction
includes computation and testing instrumentation blocks into a
single complete compiled system. This measurement illustrates
the measure voltage block, effectively a slow speed (200SPS),
high-resolution (14-bit) voltage measurement. The structure
uses the FG programming circuitry, including the 14-bit mea-
surement ramp ADC, still available in run mode. These blocks
abstract further at the sub band processing stage as the front-
end of an acoustic classifier (e.g. [9]). With the higher level
of abstraction, handling the co-design issue between at least
analog code, digital code, and µP code becomes immediately
apparent. Tools should enable designers to effectively and
efficiently design through the large number of open questions
in this analog–digital codesign space.

IV. SOC FPAA HARDWARE INFRASTRUCTURE

The FPAA structure uses an open-source board design3

connected (through USB) to a laptop with the Virtual Machine
and FPAA tools. The SoC FPAA programs the FG elements
from the switch list using the µP. The programming appears
as simple as downloading code libraries (e.g. python, Java)
to stream the device data through the TCL framework used
by the design tools. Programmable subthreshold and above
threshold current sources are routinely programmed over six
orders of magnitude (e.g. 30pA to 30µA) with better than 1
percent accuracy at all values including subthreshold current
levels [20]. The interface board uses a single USB interface for
power and resulting infrastructure for SoC FPAA devices [21],
[22], enabling a range of user approaches, including FPAA
devices that can be powered, programmed, and controlled
through Android devices [23], or a remote FPAA infrastructure
controlled through a simple unix platform using a POP email
server controlled through open-source Python code [24].

V. SUMMARY

The open-source FPAA design tools enable design from
high-level synthesis to gate/transistor design as well as compi-
lation to configurable hardware, starting a path well understood
today by FPGA devices. The goal is to empower a large
community utilizing these FPAA devices, contributing to a
number of commercial and open-source communities, empow-
ered through common tool frameworks. The authors want to
encourage user communities towards developing a wide library
of analog and digital components as well as solving application
problems. These tools were developed along-side educational

3Board designs are available at http://hasler.ece.gatech.edu/PCboards/index.html

C4
Block

n

DC
Voltage

Arb
Waveform Amp

Detect
LPF

Block

n n

Amplitude Detection

G
N

D

First-Order LowPass Filter

GND

Amp
Detect

In

Out

Vdd

In
Out

LPF

GND

In
Out

GND

Ibias

Ibias

MSP430
Processor

Memory
Mapped
Registers

SRAM
(out)

14bit prog
 ADC

Vdd

Vdd

Vdd

Indirect
FG in CAB

GNDGND

In

Measure
VoltageInScanner

ScannerIn Out

CK

Digital
Output

Digital
Output

Measure
Voltage

Shift Register Block
(between C and local routing)Clk

Data

Digital
Out

X1 X2 Xm
Routing

Line

In: 16 lines per CAB, routing between C and local routing

Out
MSP430
Processor Memory

Mapped
Registers

SRAM
(out)

Out

Measure Voltage (Low freq Measure)

Digital Output

Scanner Block

In

Out
Out

(level=1)

(level=1)

(level=1)

(level=1)

(level=1)

Fig. 4. An example of the analog level abstraction for an acoustic subband computation. In addition to the measurement blocks, each with their own level
of abstraction, the computation requires abstractions for a scanner block, measurement infrastructure, compiled digital blocks, and assembly language code.

efforts to enable experimentally measurable mixed-signal de-
sign opportunities as well as reducing or eliminating the need
for additional benchtop test equipment other than an FPAA
board ([25], [26], [27], [22]. These techniques were used in
a first undergraduate transistor circuits course [28], [29]. The
open-source tools opens further commercial and educational
applications upon commercial availability of FPAA devices.

REFERENCES

[1] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,
M. Nasr, S. Wang, T. Liu, N. Ahmed, K. B. Kent, J. Anderson, J. Rose,
and V. Betz, “VTR 7.0: Next Generation Architecture and CAD System
for FPGAs,” vol. 7, 2014. pp 6:1–6:30.

[2] J. Hasler, “Large-Scale Field Programmable Analog Arrays,” IEEE
Proceedings, vol. 108. no. 8. August 2020. pp. 1283-1302.

[3] S. Ganesan and R. Vemuri, “Digital Partitioning for Field-Programmable
Mixed-Signal Systems,” ARVLSI, 2001, pp.172-185.

[4] G.R. Boyle, B.M. Cohn, D.O. Pederson, and J.E. Solomon, “Macromod-
eling of Integrated Circuit Operational Amplifier,” IEEE JSSC, vol. 9,
1974. pp. 353-363.

[5] G. Casinovi, “A macromodeling algorithm for analog circuits,” IEEE
TCAD, vol. 10, no. 2, 1991, pp. 150-160.

[6] S. Liao and M. Horowitz, “A verilog piecewise-linear analog behavior
model for mixed-signal validation,” IEEE Transactions CAS I, vol. 61,
no. 8, 2014, pp. 2229-2235.

[7] Barcelona Design, http://www.barcelonadesign.com. Company is not in
business any longer (started in 1999); link provided as a reference.

[8] C. Mead, “Neuromorphic electronic systems,” Proc. IEEE, no. 78, 1990.
pp. 1629-1636.

[9] S. George, S. Kim, S. Shah, J. Hasler, M. Collins, F. Adil, R, Wunderlich,
S. Nease, and S. Ramakrishnan, “A Programmable and Configurable
Mixed-Mode FPAA SoC,” IEEE Transactions on VLSI, vol. 24, no. 6,
2016, pp. 2253-2261.

[10] P. Blouw, X. Choo, E. Hunsberger, C. Eliasmith, “Benchmarking
Keyword Spotting Efficiency on Neuromorphic Hardware,” arXiv:
1812.01739v2, April 2, 2019.

[11] M. Collins, J . Hasler, and S. George, “An Open-Source Toolset Enabling
Analog–Digital Software Codesign,” Journal of Low Power Electronics
Applications, vol. 6, no. 1, February 2016.

[12] C. R. Schlottmann, C. Petre, and P. E. Hasler, “Simulink Framework for
Design to and Automated Conversion on Large-Scale FPAA Devices,”
IEEE Transactions VLSI, February 2011.

[13] C. Schlottmann and J. Hasler, “High-level modeling of analog compu-
tational elements for signal processing applications,” IEEE Transactions
VLSI, vol. 22, no. 9, 2014. pp. 1945–1953.

[14] G. Cowan, R. Melville, and Y. Tsividis, “A VLSI analog computer/digital
computer accelerator,” IEEE JSSC, vol. 41, no. 1, 2006, pp. 4253.

[15] B. Rumberg and D. W. Graham, “A Low-Power Field-Programmable
Analog Array for Wireless Sensing,” ISQED, 2015.

[16] F. Henrici, J. Becker, S. Trendelenburg, D. De Dorigo, M. Ortmanns,
and Y. Manoli, “A field programmable analog array using floating gates
for high resolution tuning,” ISCAS, 2009, pp. 265-268.

[17] A. Natarajan and J. Hasler, “Modeling, simulation and implementation
of circuit elements in an open-source tool set on the FPAA,” Analog
Integrated Circuits and SP, vol. 91, no. 1, April 2017. pp. 119-130

[18] C. Twigg, J. Gray, and P. Hasler, “Programmable Floating-gate FPAA
switches are not dead weight,” IEEE ISCAS, May 2007, pp. 169-72.

[19] S. Kim, S. Shah, and J. Hasler, “Calibration of Floating-Gate SoC FPAA
System,” IEEE TVLSI, July 2017.

[20] S. Kim, J. Hasler, and S. George, “Integrated Floating-Gate Program-
ming Environment for System-Level ICs,” IEEE Transactions VLSI, vol.
24, no. 6, 2016, pp. 2244-2252.

[21] S. Koziol, C. Schlottmann, A. Basu, S. Brink, C. Petre, S. Ramakr-
ishnan, P. Hasler “Hardware and Software Infrastructure for a Family
of Floating-Gate FPAAs,” IEEE ISCAS, June 2010. Winner of the best
demonstration paper award.

[22] J. Hasler, S. Kim, S. Shah, F. Adil, M. Collins, S. Koziol, and S.
Nease, “Transforming Mixed-Signal Circuits Class through SoC FPAA
IC, PCB, and Toolset,” IEEE European Workshop on Microelectronics
Education, Southampton, May 2016.

[23] B. Bolte, S. Shah, S. Kim, P. Hwang and J. Hasler, “FPAA Demonstra-
tion Controlled through Android-Based Device,” sl IEEE ISCAS, 2016.

[24] J. Hasler, S. Kim, S. Shah, I. Lal, M. Kagle, and M. Collins, “Remote
FPAA System Setup Enabling Wide Accessibility of Configurable de-
vices,” JPLEA, vol. 6, no. 14, 2016, pp. 1-17.

[25] C. Twigg and P. Hasler, “Incorporating Large-Scale FPAAs Into Analog
Design and Test Courses,” IEEE Transactions Education, Vol. 51, No.
3, 2008, pp. 319-324.

[26] P. Hasler, C. Schlottmann, S. Koziol, S. Ramakrishnan, S. Brink, and A.
Basu, “FPAA chips and tools as the center of an Design-Based Analog
Systems Education,” IEEE MSE, San Deigo, June 2011, pp. 47-51.

[27] M. Collins, J. Hasler, and S. George, “Analog systems education: An
integrated toolset and FPAA SoC boards,” IEEE MSE, 2015, pp. 32-35.

[28] J. Hasler, A. Natarajan, S. Shah, and S. Kim, “SoC FPAA Immersed
Junior Level Circuits Course,” MSE, May 2017.

[29] J. Hasler, “Circuit Implementations Teaching a Junior Level Circuits
Course Utilizing the SoC FPAA,” ISCAS 2018, Florance, May 2018.

[30] Scilab Enterprises. Scilab: Free and Open Source software for numerical
computation. Scilab Enterprises, Orsay, France, 2012.

