
OpenFPGA: Towards Automated Prototyping for
Versatile FPGAs

Xifan Tang, Ganesh Gore, Edouard Giacomin, Aurélien Alacchi, Baudouin Chauviere and Pierre-Emmanuel Gaillardon
University of Utah

Email: xifan.tang@utah.edu

Abstract—This paper introduces an open-source framework
OpenFPGA which aims to automate the design, verification
and layout of highly versatile FPGA architectures. OpenFPGA
offers a high-level architecture description language for users
to customize their FPGA architectures down to circuit-level
details. Based on the architecture modeling, OpenFPGA can
auto-generate Verilog netlists, with which users can perform
verification as well as generate production-ready layouts using
modern EDA tools. OpenFPGA includes a generic Verilog-to-
Bitstream generator, as a native EDA toolchain for any FPGAs
that are prototyped by OpenFPGA. To demonstrate the capability
of OpenFPGA, we showcase the <24-hour layout generation of
two FPGA fabrics which are based on Stratix-like architecture
built with a commercial 12nm standard-cell library and 40nm
custom cells respectively.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are playing a
rising role in modern computing systems, particularly as a
proxy to implement accelerators, enabling high-performance
data processing applications [1]. The applications create a strong
need on domain-specific FPGA fabrics where specific types
of computing resources, such as BRAM and DSP, are highly
demanded more than any existing FPGA product can offer.
However, designing an FPGA fabric costs significant human
efforts and leads to long development cycles even for industrial
leaders, as illustrated in Fig. 1. First, modern FPGAs contains
a considerable amount of manual layouts, imposing significant
hardware engineering effort when porting to a new technology
node. Second, associated Electronic Design Automation (EDA)
tools, especially bitstream generation, require adhoc software
optimization for each FPGA architecture. To achieve hardware-
software co-design, architects with strong expertise are needed
to coordinate the hardware and software development. Con-
sidering the high development cost, general-purpose FPGAs
have become the mainstream rather than domain-specific ones,
missing the peak efficiency for modern data science applications.
To overcome the technical and economical barriers, embedded

Fig. 1: Comparison on engineering time and effort to prototype an
FPGA using OpenFPGA and conventional approaches.

Fig. 2: OpenFPGA tool suites and design flows.

FPGA (eFPGA) industrial players and academic researchers
have committed automated methodologies [2]–[7], through
modeling FPGA fabrics as Verilog netlists and generating
layouts using ASIC semi-custome design suites. However, these
pioneering works are mostly closed source and also limited to
a small set of architectures.

In this paper, we introduce OpenFPGA 1, an open-source
framework that enables automated prototyping for modern
and versatile FPGA architectures. To enable various design
purposes, OpenFPGA integrates several tools to i.e., FPGA-
Verilog, FPGA-SDC and FPGA-bitstream (highlighted green
in Fig. 2), with other popular open-source EDA tools, i.e.,
VPR [8] and Yosys [9]. OpenFPGA offers an XML-based
architecture description language for users to customize their
FPGA architectures down to circuit-level details. Physical
implementations of a customizable FPGA fabric can be
implemented using a simple production flow in Fig. 2. An XML-
based FPGA architecture description is translated to gate-level
Verilog netlists of the whole FPGA fabric, and then a physical
design back-end flow can be launched to obtain a complete

1Github: https://github.com/LNIS-Projects/OpenFPGA



Fig. 3: OpenFPGA architecture annotation enabling fully customizable FPGA architecture and circuit-level implementation.

TABLE I: Supported primitive blocks in netlist generation
Resource Auto- External Description

Type generation Netlist
LUT X X Support any input size, fracturable structure and any intermediate buffer location

Multiplexer X × One-level and any multiple-level structure (include tree structure)
Hard IP × X Include adder, flip-flop, DSP, BRAM and any other IP types that VPR can support

Configurable Memory × X Support I/O, SRAM, latch and scan-chain flip-flop

GDSII layout. To assist with sign-off, OpenFPGA is capable
of auto-generating testbenches to perform pre- and post-layout
verification, as well as Synopsys Design Constraint (SDC) files
to enable timing-driven back-end flows and conduct post-layout
timing analysis. FPGA developers can transcript applications
written in Verilog to configuration bitstream and implement
them on the FPGA fabric, by following the end-user flow in Fig.
2. OpenFPGA accepts and outputs in standard file formats, and
therefore can interface a wide range of commercial and open-
source tools, as listed in Table II. We demonstrate the capability
of OpenFPGA by prototyping two medium-size FPGA fabrics
resembling the Stratix IV architecture but different in circuit
topology, backend strategy and technology nodes.

The rest of the paper is organized as follows. Section
II introduces OpenFPGA’s architecture description language.
Section VI showcases OpenFPGA with post-layout results.
Section VII concludes the paper and discusses future work.

II. OPENFPGA ARCHITECTURE DESCRIPTION LANGUAGE

XML-based FPGA architecture language is a key feature
of VPR, which allows users to define versatile programmable
fabrics down to point-to-point interconnection [11]. OpenFPGA
leverage VPR’s architecture description by introducing an
XML-based architecture annotation, enabling fully customizable
FPGA fabric down to circuit elements. As illustrated in Fig.

TABLE II: Supported commercial and open-source EDA tools
Usage Tools

Backend Synopsys IC Compiler
TM

II
Cadence Innovus

TM

STA Synopsys PrimeTime
TM

Cadence Tempus
TM

Verification Synopsys VCS
TM

Synopsys Formality
TM

Mentor ModelSim
TM

Mentor QuestaSim
TM

Cadence NCSim
TM

Icarus iVerilog
PDK/Cell Library ASAP 7nm

TSMC 40nm
TSMC 180nm

GF 130nm
GF 12nm

3, OpenFPGA’s architecture annotation covers a complete
FPGA fabric, including both the programmable fabric and
the configuration peripheral. Circuit implementation of each
primitive block, e.g., Look-Up Table (LUT), routing multiplexer
and configurable memory, at any location of the architecture,
can be customized. For example, the routing multiplexers in



Fig. 4: Flexible netlist format supported by FPGA-Verilog to enable
various backend choices.

the connection blocks may adapt a two-level structure while
the routing multiplexers in the logic element is built with a
one-level structure. OpenFPGA can auto generate the HDL
netlists of these circuits or use an existing HDL netlists, such
as standard cells or even custom cells that are crafted by users.
In the example of Fig. 3, the flip-flops in the logic elements are
built with a high-speed standard cell as they are in the datapath,
while the flip-flops as configurable memory are built with a low-
power standard cell. Table I summarize the supported circuit
topology for each type of primitive blocks that may occur
in FPGAs. Combined with the VPR architecture description,
OpenFPGA offers a large design space for users to customize
FPGAs w.r.t their Power, Performance and Area requirements.

The architecture annotation is a separated XML file than
the VPR architecture description. Being compatible to the VPR
XML syntax, architects can first use VPR to perform architec-
ture exploration and then employ OpenFPGA to prototype their
FPGA fabrics. OpenFPGA’s architecture description language
is fully documented at [12].

III. OPENFPGA FPGA-VERILOG

FPGA-Verilog consists of two Verilog generators: the
fabric generator which converts the XML-based architecture
description to Verilog netlists modeling the FPGA fabric, and
the testbench generator which outputs Verilog testbenches to
validate the correctness of the Verilog netlists.

A. Fabric Netlist Generation

The fabric netlists includes both a programmable fabric with
configuration-chain circuits embedded. As shown in Fig. 3, the
programmable fabric follows a tile-based organization, where
columns of tiles may be replaced by heterogeneous blocks. Note
that FPGA-Verilog generates highly repeatable fabrics, which
can significantly simplify the backend process. This is enabled
by the tileable Routing Resource Graph (RRGraph) generator,
which can guarantee the minimum number of connection blocks
and switch blocks for any FPGA architectures. Therefore, only
a few unique tiles are P&Red and then are assembled in a final
layout. FPGA-Verilog is designed to output Verilog netlists in
flexible format/syntax. The compatibility makes OpenFPGA as
an adaptive tool, being capable of interfacing most commonly
used EDA tools, as listed in Table II. For instance, FPGA-
Verilog support both behavorial-level and technology-mapped
fabric netlists, supporting various backend strategies, as shown
in Fig. 4. The behavioral Verilog is full compatible for a
standard ASIC design flow, starting from synthesis to physical
design. The technology mapped Verilog can directly interface
the physical design tools, where experienced chip designers can
use custom cells (e.g., transmission-gate-based multiplexers)
that are well established but not synthesizable using standard
ASIC tools. We refer interested readers to [10], [13] for more
details.

TABLE III: Auto-generated testbench features
Testbench Runtime Test Vector Test Coverage

Full Long Random stimulus Full fabric
Pre- Short Random stimulus/ Programmable

configured Formal method fabric only

Fig. 5: Auto-generated pre-configured modules enabling testbench
reuse.

Fig. 6: An example of how iterative timing constrained backend flow
can be enabled by FPGA-SDC.

B. Testbench Generation

As shown in Fig. 2, FPGA-Verilog can auto-generate two
types of Verilog testbenches to validate the correctness of
an implemented fabric: full and pre-configured. Users can
customize clock frequencies and number of clock cycles to be
used in the testbenches through an XML-based simulation
setting file (see Fig. 2). The two testbenches share the
same organization with self-testing features Full testbench
is designed to validate both the configuration circuits and
programming fabric of an FPGA, using a limited number of test
vectors. The pre-configured testbench skips the time-consuming
configuration phase and focus on applying high-coverage test
vectors. As illustrated in Fig. 5, the preconfigured testbench
is based on the preconfigured FPGA module, where an FPGA
fabric is instantiated with a preloaded user’s bitstream. Note
that the preconfigured module is encapsulated with the same
port mapping as the user’s RTL design. Therefore, users can
either feed the module to a formal tool for a 100% coverage
formal verification, or use their existing testbenches for a
post-OpenFPGA high coverage testing. The two testbenches
offer different trade-offs between runtime and test coverage,
as detailed in Table III. We believe that with a proper use of
the two testbenches, the verification process for FPGAs can be
significantly simplified or even automated. We refer interested
readers to [14] for more details.

IV. OPENFPGA FPGA-SDC

As explained in Fig. 2, FPGA-SDC aims to generate timing
constraints in a standard SDC format, which can be used
by both backend tools and STA tools. Users can define the
timing constraints in the VPR architecture, covering all the



pin-to-pin timing of the programmable logic and configuration
circuits. Using the timing constraints, backend tools can force
homogeneous delays across the fabric. By exploiting backend
and STA tools, users’ timing constraints can be automatically
checked (see Fig. 6), enabling iterative improvement on the
timing convergence of FPGA fabrics. More details are available
in the OpenFPGA online documentation 2.

V. OPENFPGA FPGA-BITSTREAM

FPGA-Bitstream can generate two types of bitstreams: (1)
a generic bitstream where configuration bits are organized out-
of-order in a database. FPGA-Bitstream read and output the
bitstream database in XML format, enabling the creation of
synthetic bitstream. Note that the generic bitstream is designed
to be an interchangeable database similar to FASM [15], but
cannot be directly loaded to the FPGA fabric. (2) a fabric-
dependent bitstream, where the generic bitstream is organized
in the sequence being loadable to the configuration circuits
of FPGAs. FPGA-Bitstream is a general-purpose bitstream
generator, natively supporting any FPGA architecture that the
XML description can model. As such, OpenFPGA can offer
instant EDA support for chip designers once the XML-based
architecture description is finalized. More details are available
in OpenFPGA online documentation 3.

VI. OPENFPGA SHOWCASE

OpenFPGA has been practiced to generate the full-chip
layouts within 24 hours. Table IV showcases two examples
using different technology nodes but being similar to the Stratix-
IV architecture. We refer interested readers to [14] for more
details.

TABLE IV: OpenFPGA layout generation showcase
Item Homogeneous Heterogeneous

Layout view
Tech. node 40nm 12nm

LUT 4k 9.92k
Backend Cadence Synopsys

Innovus 19.1 ICC2 2019.03
Area 7mm2 9mm2

Runtime 24 hr 12 hr

VII. SUMMARY AND FUTURE WORK

In this paper, we introduced OpenFPGA, an open-source
framework that can prototype a customizable full FPGA fabric
through XML-to-GDSII design flow. OpenFPGA also provides
a Verilog-to-Bitstream design flow as the associated CAD tools
supporting any FPGAs that the architecture description language
can model. We showcased two FPGA fabrics whose layouts are
generated in <24 hours based on Stratix-like architecture and

2https://openfpga.readthedocs.io/en/master/manual/openfpga shell/
openfpga commands/fpga sdc commands.html

3https://openfpga.readthedocs.io/en/master/manual/fpga bitstream/index.
html

built with a commercial 12nm standard-cell library and 40nm
custom cells respectively. In future, research efforts will be
spent in achieving the same complexity of commercial state-of-
art, such as supporting million-of-LUT device, more versatile
architecture and configuration circuitry. OpenFPGA will also
embrace more open-source tooling, such as OpenROAD [16],
cocotb [17], SymbiFlow [18], SkyWater Open Source PDK
[19], to build a vibrant community.

ACKNOWLEDGMENTS

This material is based on research sponsored by Air Force
Research Laboratory (AFRL) and Defense Advanced Research
Projects Agency (DARPA) under agreement number FA8650-
18-2-7855. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of Air Force
Research Laboratory (AFRL) and Defense Advanced Research
Projects Agency (DARPA) or the U.S. Government.

REFERENCES

[1] Chen Zhang et al., Optimizing FPGA-based Accelerator Design for Deep
Convolutional Neural Networks, ACM/SIGDA International Symposium
on FPGA, 2015, pp. 161-170. 35, No. 1, pp. 16-22, Feb. 2018.

[2] I. Kuon et al., Design, Layout and Verification of an FPGA Using
Automated Tools, ACM/SIGDA International Symposium on FPGA, 2005,
pp. 215-226.

[3] V. Aken’Ova et al., A soft++ eFPGA Physical Design Approach with Case
Studies in 180nm and 90nm, IEEE Computer Society Annual Symposium
on Emerging VLSI Technologies and Architectures (ISVLSI’06), 2006,
pp. 1-6.

[4] J. Kim et al., Synthesizable Standard Cell FPGA Fabrics Targetable
by the Verilog-to-Routing (VTR) CAD Flow, ACM Transactions on
Reconfigurable Technology and Systems, Vol. 10, No. 2, April 2017.

[5] B. Grady et al., Synthesizable Heterogeneous FPGA Fabrics, IEEE
International Conference on FPT, 2018, pp. 1-8.

[6] H. Liu, Archipelago - An Open Source FPGA with Toolflow Support,
Master Thesis, University of California, Berkeley, 2014.

[7] A. Li et al., PRGA: An Open-source Framework for Building and Using
Custom FPGAs, workshop on Open Source Design Automation (OSDA),
2019.

[8] Kevin E. Murray, et al., VTR 8: High-performance CAD and Customizable
FPGA Architecture Modelling, ACM Trans. Reconfigurable Technol. Syst.
13, 2, Article 9 (June 2020).

[9] yosys – Yosys Open SYnthesis Suite, https://github.com/YosysHQ/yosys
[10] X. Tang et al., OpenFPGA: An Opensource Framework Enabling Rapid

Prototyping of Customizable FPGAs, International Conference on FPL,
2019, pp. 367-374.

[11] FPGA Architecture Description, https://docs.verilogtorouting.org/en/
latest/arch/

[12] OpenFPGA Architecture Description, https://openfpga.readthedocs.io/
en/master/manual/arch lang/index.html

[13] X. Tang et al., A Study on Switch Block Patterns for Tileable FPGA
Routing Architectures, IEEE International Conference on FPT, 2019, pp.
247-250.

[14] X. Tang et al., OpenFPGA: An Open-Source Framework for Agile
Prototyping Customizable FPGAs, in IEEE Micro, vol. 40, no. 4, pp.
41-48, 1 July-Aug. 2020.

[15] FPGA Assembly (FASM), https://github.com/SymbiFlow/fasm
[16] The OpenROAD project, https://theopenroadproject.org/
[17] cocotb: a coroutine based cosimulation library for writing VHDL and

Verilog testbenches in Python, https://github.com/cocotb/cocotb
[18] SymbiFlow: Innovate by reaching for the open source FPGA tooling,

https://symbiflow.github.io/
[19] SkyWater Open Source PDK, https://github.com/google/skywater-pdk


