
Edalize it. Don’t critizise it
Olof Kindgren

Abstract—Edalize (https://github.com/olofk/edalize) is an ab-
straction library for interfacing different EDA tools with a single
description of the input files and tool configuration.

Index Terms—Edalize, FuseSoC

I. INTRODUCTION

A language like C has multiple compilers such as GCC and
LLVM. Switching between them is easy peasy because the
two tools mostly speak pretty much the same language.

The same thing however can not be said about different
EDA tools even though many of them really accomplish the
same thing

And this is where Edalize comes in, as a Rosetta stone for
EDA tools.

In practice though, the communication will look more like
this

II. HISTORY

Edalize was born inside of FuseSoC, but over time it became
clear that the part of FuseSoC that was interfacing EDA tools
could be useful as a standalone project, and thus Edalize was
born

Now that Edalize was its own entity, it needed a way to talk
its companion FuseSoC



With the EDAM format, there was a standardized way to
communicate between FuseSoC and Edalize. But having a
standard also means that either part can communicate with
any other project that also implement this standard. And this
is really why Edalize and EDAM was created, to allow other
projects to reuse either part as they see fit.

And it seems to work. Edalize has been picked up by
several projects that need to interface EDA tools, rather
than implementing all this by themselves, and the list keeps
growing.

III. OVERVIEW

As of writing, Edalize supports 21 different EDA tools with
a handful other in the works. This includes simulators, FPGA
synthesis tools, linters and soon ASIC synthesis and formal
verificaion.

The EDAM API is documented at https://edalize.
readthedocs.io/en/latest/edam/api.html so there’s no point in
going through that here. But a few words about the steps that
Edalize takes after being passed an EDAM description.

Edalize can be asked to run through all these steps, or stop
after having completed one of them. The following subsections
will go through their purpose and the reason for stopping after
each step.

A. Configure

The first step that Edalize takes is called setup or configure.
This converts the EDAM description into the native format
of the requested EDA tool and creates a script or Makefile
that can launch the whole process with a single command. At
this point, the EDA tool is not actually launched. This means
that the configure step can be done without having access to
the EDA tool. Doing the configure step also unshackles the
project from Edalize and any subsequent step is designed to
be usable without Edalize. This is useful to create project files
that can be sent together with the source to other who don’t
use Edalize, or for archival purposes. It can also be used by
those who prefer to create an initial setup with Edalize and
continue using the GUI of their EDA tool of choice from then
on.

B. build

The build step does the heavy lifting of running the EDA
tool to produce some sort of binary image. For simulators, this
creates the compiled simulation model. For FPGA toolchains
this creates the FPGA image to be programmed to the FPGA.
For linting tools, this performs the actual linting.

For FPGA toolchain the process can be stopped here if the
FPGA image is the requested result. For simulators, it makes
sense to stop here if the same compiled simulation model is to
be executed with a set of different parameters in the following
run stage.

C. run

Running means different things for different tools. For
simulators it means running the compiled simulation model,
and Edalize allows setting run-time parameters to run the
simulation with different parameters without recompiling.
Common uses of this is to run an integrated CPU with different
software.

For FPGA toolchains, running means programming the
FPGA image to the board. This has turned out to not be very
intuitive, so it might change in the future.

IV. FUTURE WORK

Today, Edalize is based on backends or tools, with some
confusion regarding the terminology. Some backends can be
set up to work in different modes (e.g. verilator used in C++,
SystemC and lint modes). Other backends are built up from
parts that can be switched out to equivalent functionality (e.g.
icestorm which can use ArachnePnR or NextPNR, or several
other FPGA-vendor-powered backends that can potentially use
yosys for synthesis). This works mostly fine for the existing
flows but there are several cases where this is not ideal.

1) Netlist simulations: This typically requires running most
of an FPGA (or ASIC) flow, export the result to RTL and then
run a simulator. This is not easy to achieve today without
duplicating functionality.



2) VUnit simulations: The VUnit support sets the stage for
VUnit and uses the VUnit tool interfacing code instead of the
support in Edalize. The situation for Cocotb is simuilar.

So for these reasons, we are looking at a revamped Edalize
called

Edalize, slight return

A. Implementation

Instead of tool-specific backends, ESR will be based around
flows which are graphs built up from stages (nodes)

Each stage will pass files and an EDAM file between them.
By having all stages input and output EDAM files we can
easily combine them in different ways.

Edalize will still consist of three major stages, configure
(setup?), build and run. configure creates all project files and
creates the graph. Build executes all the build stages. The
run stage is for final tasks that make sense to run several
times even though though the source files are unchanged.
E.g. running several simulations runs without rebuilding the
simulation model, or reprogram an FPGA multiple times with
the same FPGA image. As a counter-example, e.g. synthesis
does not fit into this category as it should produce identical
result given the same input.

At configure time, the flow graph is set up and the flow
configuration and tool settings are applied to each stage to
generate the necessary tool project/config files. A ninja (tbd)
file is created to describe the dependencies between the stages.

The build phase should only execute ninja (or similar) to
run the graph to completion

The run phase needs to be better defined. It has runtime
parameters but might need something else too.


