OpenLANE: The Open-Source Digital ASIC
Implementation Flow

Ahmed Alaa Ghazy' and Mohamed Shalan?
'Efabless Corporation, San Jose, USA
2The American University in Cairo, New Cairo, EGYPT

Abstract—OpenLANE is a tape-out-hardened flow that ad-
dresses two main use cases: hardening a macro and integrating
a System-on-a-Chip (SoC). It was used successfully to tape out
a family of RISC-V based SoCs known as “striVe”. This paper
reviews the various components of the flow with a particular focus
on the challenges that faced SoC integration while working on
the first of the striVe chips and the main ideas used to overcome
them, achieving full automation.

Index Terms—ASIC, EDA, OpenLANE, OpenROAD, SoC,
Flow, Macro, Floor-planning, RISC-V, VLSI, PDK, Open-Source

I. INTRODUCTION

As a manufacturing-ready open process development kit
(PDK) is emerging [1], and as open-source EDA tools are
reaching an unprecedented level of maturity from logic syn-
thesis to placement and routing to physical verification, Open-
LANE [2] was at the intersection of all of those outstanding
efforts, allowing a new methodology to be born, creating a
fully open-source RTL-to-GDSII flow. The methodology was
developed with the open PDK (SKY130) in mind, but, at the
same time, it remained generic to be relevant and configurable
for other technologies.

The OpenLANE flow utilizes tools mainly from the Open-
ROAD [3], YosysHQ [4], and Open Circuit Design [5]
projects. The way those tools are used, augmented by a number
of other custom tools and scripts, defines the methodology
of the flow. When the project started in October 2019, the
OpenROAD tools were all standalone, almost each of them
having its own infrastructure, front-ends, and back-ends, which
were harder to work with than now. This might seem un-
intuitive because the basic goal of such architecture is that
each tool does one thing and does it well. However, as more
thoroughly discussed in [6], this 1980s style EDA tool flow
does not work well as re-iterating through some of the flow
steps makes the cost of file I/O operations begin to dominate
the cost of the actual processing needed. This, as well as other
reasons, was the main motivation for the shift to an EDA
physical data model shared among the various tools, OpenDB
[7]. This provided an infrastructure for the creation of custom
tools, which is what was utilized in OpenLANE to supplement
the flow tools with other custom tools and utilities needed to
fill the compatibility and methodology gaps to achieve full
automation.

OpenLANE supports two main use cases. First, It can be
used to harden designs from their RTL HDL models obtaining

what we will refer to as soft macros. The second use case is
integrating macros into a complete chip. To demonstrate its
capabilities, OpenLANE has been used to successfully tape
out a family of RISC-V based SoCs called striVe.

The following sections will overview the OpenLANE flow,
the tools used or created, and both supported use cases with a
focus on the SoC integration flow used to fully automate the
process from an RTL description to a manufacturable LVS-
and DRC-clean chip layout.

II. OPENLANE MACRO HARDENING FLOW

Hardening a design is the process of taking it from Hard-
ware Description Language (HDL) model to the various views
of the manufacturable mask layouts.

A hardened design (a soft macro) is usually then instantiated
within another encompassing design. There are usually two
purposes behind hardening a macro before using it in the
context of a bigger design.

« First, it may not be possible at all to flatten the macro
within the bigger design for several reasons; for instance,
the macro and the design may be using vastly different
sets of IPs or standard cell libraries that are incompatible
either geometrically (using different site dimensions) or
electrically (powered using different voltage domains).

o The other reason is simply reusability. Hardening a macro
can be thought of as a well-invested one-time effort. Once
physically verified, that is, once LVS- and DRC-clean, the
same verified macro can be used across different designs.
Also, if one is strict with the specification of the macro
interface, which means pre-defining its exact dimensions
and pin locations, then in cases where the functional
definition of the macro itself is subject to change or if
issues with the macro were found later in the process,
then the consecutive steps in the process do not have to be
repeated after fixing the issue, and it is a matter of simply
re-hardening the macro, according to the specification,
and “plugging” it in instead of its outdated version. This
makes it possible to work top-down instead of bottom-
up once a preliminary version of the macro is available.
This use case is supported through a custom I/O placer
available through the flow.

Fig. 1 illustrates the basic default flow; this is what runs
in the batch (non-interactive) mode. Most of the steps are
configurable and custom flows can be created by the use of
interactive scripts. The flow expects the design source HDL

J

RTL Synthesis
(Yosys + abc)

Synth
Exploration

A STA
(OpenSTA)

Y
D o
(Fault)

Floorplanning

Placement

9]
ik
w

OpenROAD App

Optimization

Fake ant. diodes
Insertion Script

Global Routing

Design
Exploration

RC Extraction

STA
(OpenSTA)

Physical
Verification
(magic & netgen)

LEC
(yosys)

Detailed Routing
(TritonRoute)

Fake ant. diodes
Swapping
Script

gds2 Streaming
(magic)

> cDslI

|

Fig. 1. Macro Hardening Flow

files as an input as well as the desired PDK source files. Below
is a summarized breakdown of thestages seen in the figure.

A. RTL Synthesis and STA

The design is synthesized into a gate-level netlist using
yosys and static timing analysis is performed on the resulting
netlist using OpenSTA [8]. An optional so-called Synthesis
Exploration can be performed; this is where the space of
gate-level netlists equivalent to the input design is explored.
Currently there are four default synthesis strategies generating
four different points in the design space; those represent
different degrees of area-delay trade-offs as well. A user can
also add their own custom synthesis script/strategy if desired.
STA is performed on each point in the design space and
the result would be represented graphically on an HTML
dashboard.

B. Insertion of DFT structures

An open-source Design For Testability (DFT) toolchain,
Fault [9], can optionally be used to modify the netlist, inserting
scan chains and the necessary IO ports to scan and test the
design after fabrication. More on that in [10]. A variant of the
striVe chips is being developed with DFT structures included
in preparation for a full integration with OpenLANE.

C. Physical Implementation

Advancing with the physical implementation, we note that
most of the tools in this stage are used from within the Open-
ROAD application [11] in combination with other tools, some
of them are custom and based on the OpenDB infrastructure,
while others are indpendent. For example, every time a tool
modifies the netlist, which happens during Clock Tree Synthe-
sis (CTS), post-placement optimizations (using OpenPhySyn
[12]), or diode insertion, an optional Logic Equivalence Check
(LEC) using yosys is performed to ensure that the new netlist
is indeed functionally equivalent to the previous one tracing all
the way to the original synthesized netlist output by yosys. For
I/O pin placement, as mentioned earlier, OpenLANE supports
two more use cases besides the default one in the OpenROAD
application; one of them is fully custom I/O pin placement for

cases where a user would prefer to have strict control over pin
locations. The other custom mode, which is particularly useful
during SoC integration to achieve clean routing on the top-
level is the so-called contextualized I/O placement; this mode
automatically places the I/O pins optimally according to the
context of their instantiation at a higher level of hierarchy. The
full details of this mode will be explained later on. The output
of this stage is a routed DEF, ready to then be evaluated.

D. Post-routing Evaluation of Results

DRC and LVS are then performed using magic [13]
and netgen [14]. Antenna checking is performed by either
OpenROAD’s ARC (Antenna Rule Checker) or using magic.
Extraction of parasitics from the routed layout is then done
using SPEF_EXTRACTOR [15], followed by another round
of static timing analysis to have more accurate timing reports
that correspond to the actual physical layout.

The final outputs of the flow, among various physical views
and reports, are mainly GDSII and LEF views, which can be
used in bigger designs.

III. OPENLANE SoOC INTEGRATION FLOW

We begin now looking at the flow that was developed in
response to the challenges associated with the fully automatic
completion of a manufacturable chip. An outline of the steps
can be seen in Fig. 2.

The first striVe chip had many issues that required manual
intervention. For example, the chip had several (rectangular)
macros scattered within the pad frame, each having pins
assigned randomly to its four sides. No kind of optimization
was applied to increase the routability of those macros on the
top-level; this was again due to the difficulty of controlling
the pin placement, which was done before the chip was even
floorplanned in accordance with the previous section.

Another issue was the lack of a tool that could perform the
power-routing on the top-level; those power routes need to be
kept short, wide, and use the highest metal layers available to
reduce the IR drop.

3"d-party User's DEF,

- Soft
Hard Design SPICE,
Macros (&8 v) Macros
Generatlon
Padframe Core Module

Preparation Hof Top- IeveI H
[Description Generation Harden[ng

Physical Signal Power Chip
Verification Routing Routing Floorplan

AN

GDSII

Fig. 2. SoC Integration Flow

The result of all of these difficulties was a sub-optimal
chip floorplan with very complex and long routes on the top-
level, which, after the signal routing stage, had several DRC
violations as well as antenna violations due to the very long
wire segments on relatively low metal layers.

Those issues were overcome back then either by manual
intervention or by making trade-offs for automation. An ex-
ample of the former is fixing the resulting DRC violations
due to the complex top-level routes; the same goes for the
power connections. An example of the latter, however, was
an antenna avoidance methodology that trades space for less
antenna violations; the idea was to reserve the space needed
to protect all sinks in the design by inserting a custom fill
cell that matches the footprint of an actual diode cell next
to every sink. A report of the antenna rule violations is
generated after routing, based on which only the smallest
number of “fake diodes” are turned into “real diodes” to
protect the vulnerable sinks. Since both cells have identical
footprints on the metal layers used for routing, we know that
this cell substitution step cannot cause more DRC violations.
This strategy was already an improvement on its brute-force
predecessor that inserts antenna diodes on all sinks by default.
The improvement significantly reduces the capacitive loads on
the affected nets and power consumption, but it still posed a
clear limitation on the maximum achievable core utilization.
Nevertheless, this worked well for the tape-outs since a very
high core utilization was not a pressing factor. The next natural
improvement on this strategy would be inserting diodes only as
necessary during global routing assuming the detailed router
highly honors the routing guides, which is the premise of
recent efforts by OpenROAD since the introduction of the new
OpenDB-based ARC.

Currently those issues have found solutions that allow full
automation, which was made possible by enforcing certain
guidelines and supporting the flow with a set of custom
methodology utilities and tools that are used.

In Fig. 2, we see that a user usually provides a set of
macros that are to be used in the design as is and are not
to be flattened. Those macros lie in two categories; first, there

are soft macros that were hardened using the flow described
in the previous section. Since we had full control over the
generation of those macros and their I/O pin pitches, sizes,
and layers, we can guarantee that they are fully routable, and,
thus, are ready to be directly used. The second type includes
hard macros, usually designed independently by a third-party;
examples of this include analog components, SRAM blocks,
and the I/O pads themselves. Some of those macros may be
already usable as they are, but oftentimes, as those macros
were not designed with any of the tools used in OpenLANE
in consideration, they suffer compatibility issues that prevent
them from being optimally used in the flow. For example,
their routability might not be optimal if the pins do not lie on
the routing grid, are too small, or are simply hard to access
through barricades that surround them. Moreover, it may be
desirable and a good practice to fully separate the problem
of DRC and LVS checking of those macros from DRC and
LVS checks of the design they are used in. For such purposes,
a set of scripts for wrapping and/or abstracting those hard
macros are provided; they support a variety of options and
modes, like extending pins to macro boundaries and black-
boxing (obstructing) everything inside. This mode relies on
magic-based scripts and can work directly with a GDSII view
of the macro; it does not modify that view directly but instead
creates an overlay on top of it, which is important to keep
the integrity of the GDSII data obtained from the source. This
step (Preparation in the figure) is a one-time effort, and the
obtained routable macros, are now useful for any number of
designs.

Users also provide the design source files (currently in
Verilog) that describe the module they would like to implement
as well as a high-level description of the I/O pads they want
to use to interface with their module. A utility in OpenLANE
takes that description and automatically generates a top-level
description of the whole chip, with the right pads instantiated
and configured to the desired mode. This step is intended for
novice users, who would now be able to integrate an SoC
without solid knowledge of the full details of I/O pads and
how to configure them properly. If needed, experienced users
can still simply skip this step and exercise more fine-grained
control over their I/O pads by providing their own top-level
description of the design.

a) Recommended Hierarchy: It is recommended that the
top-level description of the design follows certain guidelines
that result in cleaner layouts as well as other side benefits.
The main recommendation is to partition the design into two
modules that interact together: a pad frame module and a core
module; this is the logical view of the chip. Physically, this
corresponds to a pad frame enclosing only a single block.

The core module encapsulates the main user design that
contains all other macros whereas the pad frame module
contains the I/O, power, and corner pads needed in the design.
The core module would be hardened by the regular flow just
as described in the previous section while the pad frame
is generated independently using padring [16] and is then
processed by scripts based on either magic or OpenDB (both

——————— Contextualize

Fig. 3. Contextualized I/O Pin Placement

are available options) to correctly create port labels, which is
necessary for top-level LVS and SPICE simulation of the pad
frame.

b) Optimizations: When contrasted with the hierarchy
of the first of the striVe chips, in which several macros were
scrambled across the top-level, the elegance of the suggested
hierarchy can be seen clearly. This hierarchy makes optimiza-
tion on the top level a much easier problem. For example,
instead of having to optimize the relative locations of several
macros on the top-level as well as their pin positions, the
problem is now split into two simpler ones. First, macro and
standard cell placement only occurs inside the core module,
which the regular macro hardening flow excels at. Having
macros (or, even worse, standard cells) scattered at the top-
level adds an unnecessary level of complexity associated with
powering them directly from the power pads and/or tapping
them. Second, assigning the I/O pins to their optimal positions
is now only a problem with one module: the core module.
However, the subtlety here is that the I/O pins are assigned
while hardening the core module, which is before it gets placed
within the pad frame. A utility in OpenLANE can be used to
create a “virtual” floorplan that shows the confext in which
the design being hardened would be instantiated, that is, it
“contextualizes” it, which is bringing in accurate connectivity
information on how this macro would later interact with other
external macros. This information is then used to place the I/O
pins optimally, for example, with respect to the half-perimeter
wire length (HPWL) between the nodes, which can be seen
in Fig. 3.

c¢) Power-Routing: In order to automate top-level power
routing, the core module must be hardened with two concentric
core rings around its perimeter. Besides the electrical benefits
of a core ring, it is much easier to automate the power routes
from the supplies onto the core ring. The power router, another
custom tool, attempts to use the highest metal layer possible to
connect the power supplies to the core ring. An obvious reason
is reducing the IR drop across the wires since the highest metal
layers are usually the thickest; for that purpose, as well, the
power router will also maximize the number of vias generated
at intersections of connected metal layers. An added benefit
of using the highest metal layers is to minimize the antenna
effects on some of the gates inside the I/O pads which are

required to be driven using those same voltage levels used for
power. Fig. 4 shows an example of the resulting power-routed
chip floorplan. See Appendix B for real layout of striVe2a in
comparison with the layouts of Appendix A which did not
follow the recommended hierarchy back then.

i} i} i} T =

Fig. 4. Power-routed Chip Floorplan

There are other desirable benefits of the recommended
hierarchy; for example, as per Fig. 2, since the pad frame is
a logically separate module, a SPICE netlist can be extracted
from the layout using magic, which can be used to functionally
and electrically simulate the pad frame by itself. The latter
is useful to test the resilience of the pad frame against
electrostatic discharge (ESD) effects.

CONCLUSION

In this paper, we overviewed the key components of Open-
LANE and the challenges that motivated the current method-
ology to develop in the direction it took.

Both use cases of the flow allow the automatic completion of
manufacturable chips within a couple of hours if the guidelines
outlined in the previous section are followed. Of course, the
recommended hierarchy poses some challenges to some more
complex use cases that involve components powered using
several different power domains, but for most other purposes,
the current methodology is sufficient to meet the needs of the
upcoming scheduled public shuttle in November [17].

Most of the remaining work currently is aimed at making the
SoC integration flow as easy as possible for users with varying

degrees of knowledge of the process and the I/O pads. Exact
benchmarks of the SoC flow will be available as soon as that
support is released; currently, there are benchmarks publicly
available on the OpenLANE repository for macro hardening
using all the SKY130 standard cells officially released [18],
and those are used to ensure that changes to the flow mostly
result in improvements in the Quality of Results (QoR).

ACKNOWLEDGMENT

This work would not have been possible without the
dedicated efforts of Kareem Farid, Amr Gouhar, Mohamed
Kassem, and Tim Edwards.

REFERENCES

[1] “SkyWater SKY 130 PDK,” https://skywater-pdk.readthedocs.io, 2020.

[2] “OpenLANE,” https://github.com/efabless/openlane, 2020.

[3] T. Ajayi, D. Blaauw, T. Chan, C. Cheng, V. A. Chhabria, D. K. Choo,
M. Coltella, R. Dreslinski, M. Fogaca, S. Hashemi, A. Ibrahim, A. B.
Kahng, M. Kim, J. Li, Z. Liang, U. Mallappa, P. Penzes, G. Pradipta,
S. Reda, A. Rovinski, K. Samadi, S. Sapatnekar, L. Saul, C. Sechen,
V. Srinivas, W. Swartz, D. Sylvester, D. Urquhart, L. Wang, M. Woo,
and B. Xu, “OpenROAD: Toward a Self-Driving, Open-Source Digital
Layout Implementation Tool Chain [Invited Paper],” 2019.

[4] C. Wolf and J. Glaser, “Yosys-a free Verilog synthesis suite,” in Proceed-
ings of the 21st Austrian Workshop on Microelectronics (Austrochip),
2013.

[5] “Open Circuit Design,” http://opencircuitdesign.com.

[6] T. Spyrou, “OpenDB, OpenROAD’s Database,” in Proceedings of the
Workshop on Open-Source EDA Technology (WOSET), 2019.

[7] “OpenDB,” https://github.com/The-OpenROAD-Project/OpenDB.

[8] “OpenSTA,” https://github.com/The-OpenROAD-Project/OpenSTA,
2020.

[9] “Fault,” https://github.com/Cloud- V/Fault, 2020.

[10] M. Gaber, M. Abdelatty, and M. Shalan, “Fault, an Open Source DFT
Toolchain,” in Proceedings of the Workshop on Open-Source EDA
Technology (WOSET), 2019.

[11] “OpenROAD,” https://github.com/The-OpenROAD-Project, 2020.

[12] A. Agiza and S. Reda, “OpenPhySyn: An Open-Source Physical Syn-
thesis Optimization Toolkit,” in Proceedings of the Workshop on Open-
Source EDA Technology (WOSET), 2020.

[13] “Magic VLSI Layout Tool,” https://github.com/RTimothyEdwards/
magic, 2020.

[14] “NETGEN,” https://github.com/RTimothyEdwards/netgen, 2020.

[15] “SPEF_EXTRACTOR,” https://github.com/Cloud- V/SPEF_
EXTRACTOR, 2020.

[16] “PADRING - a padring generator for ASICs,” https://github.com/
YosysHQ/padring, 2020.

[17] P. Clarke. (2020, July 07) Free chips courtesy of Google, SkyWater,
eFabless. [Online]. Available: https://www.eenewsanalog.com/news/
free-chips-courtesy-google-skywater-efabless

[18] “Regression Benchmarks,” https://github.com/efabless/openlane/tree/
develop/regression_results/benchmark_results, 2020.

[19] M. R. Guthaus, J. E. Stine, S. Ataei, Brian Chen, Bin Wu, and M. Sarwar,
“Openram: An open-source memory compiler,” in 2016 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2016,
pp. 1-6.

APPENDIX

A. Tape outs

Fig. 5 and Fig. 6 show earlier tape-outs of the first two mem-
bers of the striVe family. Although mostly automated, those
chips did not benefit from the ideas discussed in this paper
and needed a considerable amount of manual intervention on
the top-level to finish.

Fig. 5. striVe

—

Fig. 6. striVe2

B. The Fully Automated striVe2a

Fig. 7 shows a fully automated variant of the striVe chips,
utilizing the ideas discussed in this paper. striVe2a uses a 1
KByte SRAM block compiled using OpenRAM [19].

Fig. 7. striVe2a

