
Pillars: An Integrated CGRA Design
Framework
Yijiang Guo, Guojie Luo

Center for Energy-efficient Computing and Applications,
Peking University, Beijing, China

Email: {yijiang, gluo}@pku.edu.cn

OUTLINE

Background

 Introduction of Pillars

Experimental study

Q & A

What is coarse-grained reconfigurable array (CGRA)?
 The advantages of CGRA

– Faster reconfiguration process due to word-level granularity.

– A more effective tradeoff between efficiency and flexibility than FPGAs and custom ASICs.

– The capability for spatial, temporal and parallel computation.

3

The motivation of Pillars4

 CGRA design and exploration tools remain in an embryonic period. Two core requirements
have not been completely satisfied:
– Iterative optimization of hardware implementation.
– Design space exploration.

 The main capabilities of existing frameworks and tools
– CCF [3] can simulate acceleration of loops of general-purpose applications on CGRA.
– The Stanford CGRA tool chain [5] can rapidly create and validate alternative hardware implementations.
– CGRA-ME [6] permits the modeling and exploration of a wide variety of CGRA architectures, and also

promote research on CGRA mapping algorithms.

 Key features of Pillars
– Integration, flexibility and consistency.

 Open-source repository: https://github.com/pku-dasys/pillars

https://github.com/pku-dasys/pillars

OUTLINE

Background

 Introduction of Pillars

Experimental study

Q & A

The overview of Pillars6
Description and abstraction of an architecture

Hardware generation

Mapping and
scheduling

RTL-level simulation

Architecture description language (ADL)7

 Hierarchy description and flattened implementations.

 Basic components:
– Block: representing the design hierarchy of an architecture

– Element: representing abstraction of Chisel hardware implementation.

 Predefined element: multiplexer, const unit, arithmetic logical unit (ALU), load/store
unit (LSU) and register files (RF).

Hardware generation8

 Explicit modules
– Each explicit modules corresponds to an element in the ADL.

– According to the parameters set up by users in the ADL, an explicit module can be generated with
different data widths, sizes, logics and so on.

 Auxiliary modules
– Auxiliary modules assist the explicit modules to perform functions correctly.

– Configuration controllers
- Repeating stored configurations every initiation interval (II) cycles and distribute them to corresponding explicit modules.

– Schedule controllers
- Controlling the cycle modules should fire.

– Synchronizers
- Implementing synchronous inputs for explicit modules with more than one input ports.

Terminologies - data flow graph (DFG)9

 Functional graph: data flow graph (DFG)
– DFG: a graph representing the computational data flow

– opNode: a node in DFG representing a computational operation

– valNode: a node in DFG representing the data

– DFG edge: for example, in c = a + b, there are three edges
connecting valNodes (a, b, c) and opNode (+)

valNode: a valNode: b

valNode: c

Terminologies - modulo routing resource graph (MRRG)10

 Physical graph: modulo routing resource graph (MRRG)
– MRRG: a graph representing the hardware resources and structure

- It is a “3D” hardware resource graph extended in the time domain

– funcNode : a node in MRRG that implements an opNode in DFG

– routingNode: a node in MRRG that transfers a valNode in DFG from a funcNode to another funcNode

– MRRG edge: connecting funcNodes and routingNodes

RF2

i0

o0

i0

o0

it0 it1

alu

i0 i1

o1

i0 i1

o1

Opcode_add
Opcode_mul

bypassfunc

1 cycle

module

graph

duplicate & modulo

Mapper & scheduler11

 Target: producing contexts that guide reconfigurable modules to perform correct
behavior during reconfiguration.

 Mapper
– Goal: mapping every opNode in DFG to a specific funcNode in MRRG, and mapping every valNode in

DFG to a connected sequence of routingNodes in MRRG.

– Method: integer linear programming (ILP) solver based on [15].

 Scheduler
– Goal: determining the fire time and synchronization method of each operator.

– Method: topological search.

RTL-level simulation12

 Pre-process
– The input data stream is transferred into LSUs

through direct memory access (DMA), and contexts
are read by the top-level CGRA module.

 Activating process
– Explicit modules can perform routing or operations

set by configuration controllers, if they have been
fired by schedule controllers.

 Post-process
– The output data stream can be obtained from LSUs.

Project Tree13

OUTLINE

Background

 Introduction of Pillars

Experimental study

Q & A

Experimental architectures - architecture skeleton15

operations: add, subtract,
multiply, shifts, and, or and xor

operations: add, subtract

torus connectivity

PE sharing a global RF

PE with a local RF

Experimental architectures - processing element (PE)16

 Simple PE
– 2 multiplexers for selecting input data

– 1 ALU for performing computation

– 1 const unit for storing const value

– 1 RF with 2 registers for temporarily
holding arithmetic results

Experimental architectures - processing element (PE)17

 Complex PE
– 2 multiplexers for selecting input data

– 1 ALU for performing computation

– 1 const unit for storing const value

– 1 RF with 2 registers for temporarily
holding arithmetic results

– 2 additional multiplexers for bypass

 Target: Xilinx ZYNQ-7000 ZC706 evaluation board

 Platform: Vivado 2019.2

 We interleave two neighboring PE columns.

 The blocks with LSU are located at the center.

Floorplan & layout18

Physical implementation & mapping results19

 Maximum frequency

 FPGA area breakdown of the implementations

 Success rate of mapping within 7200 seconds for benchmarks in [16]

 Explicit modules (on the left of “/”) and auxiliary modules (on the right)

OUTLINE

Background

 Introduction of Pillars

Experimental study

Q & A

Q & A21

 “Can there be several connected ALUs in one PE?”
– Of course yes, this is one of the core strengths of Pillars.

– Users can design their PE blocks with arbitrary connection and hierarchy.

 “What is the overhead of using Pillars?”
– The auxiliary modules may introduce overhead.

– The configuration controllers are necessary for reconfiguration, and have fixed and slight overhead
according to the architecture.

– Users can determine the scale or abandoning of schedule controllers and synchronizers in a global
config file. So the overhead of them can be controlled.

– Researches about a better tradeoff between the overhead and function of auxiliary modules are in
our schedule.

22

Thanks for listening!

	Pillars: An Integrated CGRA Design Framework
	Slide Number 2
	What is coarse-grained reconﬁgurable array (CGRA)?
	The motivation of Pillars
	Slide Number 5
	The overview of Pillars
	Architecture description language (ADL)
	Hardware generation
	Terminologies - data flow graph (DFG)
	Terminologies - modulo routing resource graph (MRRG)
	Mapper & scheduler
	RTL-level simulation
	Project Tree
	Slide Number 14
	Experimental architectures - architecture skeleton
	Experimental architectures - processing element (PE)
	Experimental architectures - processing element (PE)
	Floorplan & layout
	Physical implementation & mapping results
	Slide Number 20
	Q & A
	Slide Number 22

