jo
h

\

N
\

llllllllllll
llllllllllllllll
lllllllllllllllllll

llllllllllllllllll
llllllllllllllll

Pillars: An Integrated CGRA Design

;

Framework

Yijiang Guo, Guojie Luo

Center for Energy-efficient Computing and Applications,
Peking University, Beijing, China

Email: {yijiang, gluo}@pku.edu.cn

OUTLINE

®» Background

® |ntroduction of Pillars
= Experimental study

»Q&A

llllllllllll
llllllllllllllll
lllllllllllllllllll
llllllllllllllllllll

llllllllllllllll

IIIIIIIIIIII
llllllllllllllll
lllllllllllllllllll
llllllllllllllllllll

What is coarse-grained reconfigurable array (CGRA)? &i::i:"

IIIIIIIIIIIIIIII

= The advantages of CGRA

— Faster reconfiguration process due to word-level granularity.
— A more effective tradeoff between efficiency and flexibility than FPGAs and custom ASICs.

— The capability for spatial, temporal and parallel computation.

F o ! From Heighb:inrlsl]&]Memary
- . L1_| 8 PE Arrab
rH. e + 4 -~ 4@ @ -

; E
Y

AR
N

1
7

+

1

™

The motivation of Pillars

= CGRA design and exploration tools remain in an embryonic period. Two core requirements
have not been completely satisfied:

— |terative optimization of hardware implementation.

— Design space exploration.

= The main capabilities of existing frameworks and tools
— CCF [3] can simulate acceleration of loops of general-purpose applications on CGRA.
— The Stanford CGRA tool chain [5] can rapidly create and validate alternative hardware implementations.

— CGRA-ME [6] permits the modeling and exploration of a wide variety of CGRA architectures, and also
promote research on CGRA mapping algorithms.

» Key features of Pillars

— Integration, flexibility and consistency.

® QOpen-source repository: https://github.com/pku-dasys/pillars

https://github.com/pku-dasys/pillars

OUTLINE

= Background

® |ntroduction of Pillars

= Experimental study

»Q&A

llllllllllll
llllllllllllllll
lllllllllllllllllll
llllllllllllllllllll

llllllllllllllll

Description and abstraction of an architecture

The overview of Pillars ~ r--------mmmmmm oo 1

@Scala—based

«—

H Routing < Abstract
SChedu“ng S LU Resource Graph Model

|
I I
I I
@Data Flow : :
} I (@ Architecture Architecture
Graph : Interpreter D Description :
I I
I I
Mapping and ' |
apping an I , . I
pp g ®Mapper & (®Modulo : (@ Hierarchy Regions I
I T
I
I

Hardware generation

|
. |
Mapping el o o T ___ R I
Results il I :
i @ Flatten o : - 1
b msma s OUERE G e !
e H————AM@L _________ | : £ I
|
| Contexts 11 I I 1
' 5 R B '
| . .
: (2)simulator | (@ Verilog RTL !< G0 Chisel Top |
Code Generation | A Design |
| 1 | |
| 1 |
Ny SNSRI PSSy S ——— e gy g S Sy gy SR g g 1
| | +
: I ADFPGA
Mappability, Throughput : G3)Verilator : Synthesis, Place
and Runtime I : and Route
| |
v | |
|
Performance, Area ¥ Cvele-accurate : (A5 FPGA-overlay
and Power Estimation ySimuIation , Performance, Area and
for Benchmarks I i Power Consumption
|

l S !

RTL-level simulation

Architecture
Evaluation

Architecture description language (ADL)

class String) extends

= Hierarchy description and flattened imy

= Basi

— Block: representing the design hierarchy of an architecture

— Ele

® Preg
unit

"in@", "in1"
"outo"

C COMPONENLS;, ooec o sote wource

// for the port "inputA"” of the ALU.

mux@ "out@"

ment:representing abstraction of Chisel h

/7 An ALU that can perform some operations.

lefinéd eélement: tultiplexer, const

al ud "inputA™, "inputB™

(kSU)-and register files (RF).

// A const unit connected to the port "inputB" of ALU.
“"const@®", constParams

"oute”

val const@ new
consté

const@

/7 A black box with 2 input ports and 1 output port.

val subBlock new "subBlocke"

// Interconnection inside this block.

"in@" muxé "input@”

"inl* muxé "inputl®
mux@ "outd@" al ud "inputA®
consta "out®™ al ud "inputB™

"inl® subBLock "input@”
al ug "out@" subBlLock "inputl™
subBl ock "out@" "out@"

lementations.

BlockiImmediate

input0d inputl
mux0

igal unit

v

inputO

(AR o

nﬁ@o re

outl

inputA
alu0 outo

inputB

") Hardware generation

= Explicit modules
— Each explicit modules corresponds to an element in the ADL.

— According to the parameters set up by users in the ADL, an explicit module can be generated with
different data widths, sizes, logics and so on.

= Auxiliary modules
— Auxiliary modules assist the explicit modules to perform functions correctly.
— Configuration controllers
- Repeating stored configurations every initiation interval (1) cycles and distribute them to corresponding explicit modules.

— Schedule controllers

- Controlling the cycle modules should fire.

— Synchronizers

- Implementing synchronous inputs for explicit modules with more than one input ports.

lllllllllll
llllllllllllllll
llllllllllllllllll
llllllllllllllllllll

Terminologies - data flow graph (DFG)

llllllllllllllll

® Functional graph: data flow graph (DFG)
— DFG: a graph representing the computational data flow
— opNode: a node in DFG representing a computational operation
— valNode: a node in DFG representing the data

— DFG edge: for example, in c =a + b, there are three edges
connecting valNodes (a, b, c) and opNode (+)

llllllllllllllll
lllllllllllllllllll
llllllllllllllllll

® Physical graph: modulo routing resource graph (MRRG)
— MRRG: a graph representing the hardware resources and structure
- Itis a “3D” hardware resource graph extended in the time domain
— funcNode : a node in MRRG that implements an opNode in DFG

routingNode: a node in MRRG that transfers a valNode in DFG from a funcNode to another funcNode
— MRRG edge: connecting funcNodes and routingNodes

duplicate & modulo
module

D

‘«Ill'

graph

lllllllllll
llllllllllllllll
llllllllllllllllll
llllllllllllllllllll

Mapper & scheduler

llllllllllllllll

= Target: producing contexts that guide reconfigurable modules to perform correct
behavior during reconfiguration.

= Mapper

— Goal: mapping every opNode in DFG to a specific funcNode in MRRG, and mapping every valNode in
DFG to a connected sequence of routingNodes in MRRG.

— Method: integer linear programming (ILP) solver based on [15].

® Scheduler

— Goal: determining the fire time and synchronization method of each operator.

— Method: topological search.

. . /** A template tester.
RTL-level simulation :
* @param c the top design
* @param appTestHelper the class which is helpful
¥ when creating testers
® Pre-process */
class
— The input data stream is transferred into LSUs
. extends
through direct memory access (DMA), and contexts ’
are read by the top-level CGRA module. val testll
. . //pre-process
® Activating process io.en, ©
— Explicit modules can perform routing or operations testll
set by configuration controllers, if they have been //activating process
. i0.en, 1
fired by schedule controllers. o
™ Post-process VIR pOae
— The output data stream can be obtained from LSUs.

Fig. 3: A sample code of typical
tester 1n Pillars.

Project Tree

F—— app-mapping-results
— build.sht

— Makefile
F—— mrrg
— README.md
F—— scalastyle-config.xml
F—— scalastyle-test-config.xml
L— src

L— main

L — scala
L — tetriski
L pillars

|— archlib
F—— core
F—— examples

F—— hardware

F—— mapping

J//some pre-generated mapping resultis
J/the library dependencies in sbt
J/documents of APIs in Pillars
JS/some DFGs in DOT format

f/some ftigures in README

J/=some MRRGs

//the scalastyle file
J/the scalastyle file

f/the library of elements and blocks

JS/the core of Pillars

[//some examples showing how to use Pillars
S/hardware implemented in Chisel

J/mapping tools

F—— Pillars.scala

F—— testers

L util

J/testers in Pillars
ffutiliy for realizing hardware

OUTLINE

= Background
® |ntroduction of Pillars

™ Experimental study

»Q&A

llllllllllll
llllllllllllllll
lllllllllllllllllll
llllllllllllllllllll

llllllllllllllll

Experimental architectures - architecture skeleton

withalocal RF €7 & €72 ¢ €2 &

R PE with reduced operations
LRF LRF LRF LRF

operations: add, subtract, 10 10

multiply, shifts, and, or and xor torus.connectivity Global RF
T Tl I Tl L oL L
i F PEwith full set of operations | NlE B F KSR _é-—i)_) ;i_ _i | _E shariﬁa globalRF r <> F > r
Eoperations: add, subtract 7: E it it ij :_-_-i-::_-_: i L 11 It :Et It
i E

.

______________________ Ti Tt T Tt
______________________ RAETA N2 N2 N2 N2
| F COEBEEC— F COlEER
: Block with a Ioad/store unit LRF LRF LRF LRF
______________________ Tl il vl
- N ————— . _
MEM

1

F €& R €&—> F <— R :

LRF LRF LRF LRF "

- i ; 1 (.
1

1

Full architecture Reduced architecture

MEM Storage component

Fig. 4. Variants of ADRES architecture skeleton.

lllllllllll
llllllllllllllll
llllllllllllllllll
llllllllllllllllllll

I Experimental architectures - processing element (PE) éi:::

= Simple PE Q
— 2 multiplexers for selecting input data

— 1 ALU for performing computation ¢ ¢

mux0 mux1

— 1 const unit for storing const value

— 1 RF with 2 registers for temporarily

holding arithmetic results ‘l r
const

alu

RF

out0 outl

lllllllllll
llllllllllllllll
llllllllllllllllll
llllllllllllllllllll

I Experimental architectures - processing element (PE) éi:::

= Complex PE

— 2 multiplexers for selecting input data
— 1 ALU for performing computation
— 1 const unit for storing const value

— 1 RF with 2 registers for temporarily
holding arithmetic results

— 2 additional multiplexers for bypass

muxBypass

llllllllllllllll

alu

£

out0

RF

outl

muxOut

N A
: ;
[T

Floorplan & layout

— — — — B Tarocot: Yilinv ZVNIN_7NNN 7CT7NA ovialiniatinn hnard
I | el AT T 1 MRETE i
peEoo | 1 b Hleo2 | ¢ e , : , T
I I I I PE0C | T A o o PR (= t
PE 01 | o EMOIPE_0_3 PE 6.1 | it g o ot il Pé.LOH H l‘ e s | ¢
I R A I u) i
pE1lo | f | flPE 12 | pe_HlgiH i A el EETJ!D' i | PEW[T';f
or :_1 : H £ oF 1 3 j A PEE1 1 t ! ;AEMETPE 1:3 - PE 1. 1 D ’ . ;EM Al »
M| 1 [VEM]1 10 ; i ! : midie[Es: I i | g
f k f PE"2:0::| R e Ll pEa L b I ool e
A h I { % PE22 [1 PE:2: = | Mzm:f PE:2!3 : F’E'zi-é'l" ﬂ s i f;EML:-PE 2.3 E
PE 21 | 11 %EMFEPE23 1l PESG Gl Wi A P'Ea;o_g' rj :PEszii
- i F - PE 3 11E:] i bolpe:giaii il Pfi’. 31:’1 ﬂ ' ﬁ f;'F-M‘LS PE 3.2 V
PE 30 | i PPE32 |
| L [L E (a) Reduced-simple arch. (b) Full arch. generated from
- 3"‘ : |f HEMEE — generated from Pillars. Pillars.
| P - ; ; :
!] - Fig. 7. Layout of selected FPGA implementations.

Fig. 5: Floorplan for Vivado
place & route.

Physical implementation & mapping results

= Maximum frequency
= FPGA area breakdown of the implementations
= Success rate of mapping within 7200 seconds for benchmarks in [16]

® Explicit modules (on the left of “/”) and auxiliary modules (on the right)

TABLE I. Physical implementation on ZC706 and mapping

results for each architecture.

Full Arch. Reduced Arch. Full Stuple | Reduced Simple
Fmax[MHz] 322 36.8 86.2 87
LUT 13604 / 4902 11061 / 4646 11570 / 4488 9515/ 4376
FF 1656 / 8248 1656 / 8213 1656 / 8056 1656 / 8050
DSP 48 /0 30/0 48 1 0 30/0
BRAM 2/0 2/0 2710 2/0
Success rate 97.8% 55.6% 98.9% 55.6%

OUTLINE

= Background
® |ntroduction of Pillars

= Experimental study

»Q&A

llllllllllll
llllllllllllllll
lllllllllllllllllll
llllllllllllllllllll

llllllllllllllll

Q&A

= “Can there be several connected ALUs in one PE?”
— Of course yes, this is one of the core strengths of Pillars.

— Users can design their PE blocks with arbitrary connection and hierarchy.

®» “What is the overhead of using Pillars?”
— The auxiliary modules may introduce overhead.

— The configuration controllers are necessary for reconfiguration, and have fixed and slight overhead
according to the architecture.

— Users can determine the scale or abandoning of schedule controllers and synchronizers in a global
config file. So the overhead of them can be controlled.

— Researches about a better tradeoff between the overhead and function of auxiliary modules are in
our schedule.

IIIIIIIIIIII
llllllllllllllll
lllllllllllllllllll
llllllllllllllllllll

llllllll
lllllllllllllllllll
llllllllllllllll
lllllllllll

Thanks for listening!

	Pillars: An Integrated CGRA Design Framework
	Slide Number 2
	What is coarse-grained reconﬁgurable array (CGRA)?
	The motivation of Pillars
	Slide Number 5
	The overview of Pillars
	Architecture description language (ADL)
	Hardware generation
	Terminologies - data flow graph (DFG)
	Terminologies - modulo routing resource graph (MRRG)
	Mapper & scheduler
	RTL-level simulation
	Project Tree
	Slide Number 14
	Experimental architectures - architecture skeleton
	Experimental architectures - processing element (PE)
	Experimental architectures - processing element (PE)
	Floorplan & layout
	Physical implementation & mapping results
	Slide Number 20
	Q & A
	Slide Number 22

