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What is coarse-grained reconfigurable array (CGRA)? &i::i:"
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= The advantages of CGRA

— Faster reconfiguration process due to word-level granularity.
— A more effective tradeoff between efficiency and flexibility than FPGAs and custom ASICs.

— The capability for spatial, temporal and parallel computation.
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The motivation of Pillars

= CGRA design and exploration tools remain in an embryonic period. Two core requirements
have not been completely satisfied:

— |terative optimization of hardware implementation.

— Design space exploration.

= The main capabilities of existing frameworks and tools
— CCF [3] can simulate acceleration of loops of general-purpose applications on CGRA.
— The Stanford CGRA tool chain [5] can rapidly create and validate alternative hardware implementations.

— CGRA-ME [6] permits the modeling and exploration of a wide variety of CGRA architectures, and also
promote research on CGRA mapping algorithms.

» Key features of Pillars

— Integration, flexibility and consistency.

® QOpen-source repository: https://github.com/pku-dasys/pillars
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Description and abstraction of an architecture
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Architecture description language (ADL)

class String) extends

= Hierarchy description and flattened imy

= Basi

— Block: representing the design hierarchy of an architecture

— Ele

® Preg
unit

"in@", "in1"
"outo"

C COMPONENLS;, ooec o sote wource

// for the port "inputA"” of the ALU.
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ment:representing abstraction of Chisel h

/7 An ALU that can perform some operations.
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(kSU)-and register files (RF).

// A const unit connected to the port "inputB" of ALU.
“"const@®", constParams

"oute”

val const@ new
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const@

/7 A black box with 2 input ports and 1 output port.

val subBlock new "subBlocke"
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") Hardware generation

= Explicit modules
— Each explicit modules corresponds to an element in the ADL.

— According to the parameters set up by users in the ADL, an explicit module can be generated with
different data widths, sizes, logics and so on.

= Auxiliary modules
— Auxiliary modules assist the explicit modules to perform functions correctly.
— Configuration controllers
- Repeating stored configurations every initiation interval (1) cycles and distribute them to corresponding explicit modules.

— Schedule controllers

- Controlling the cycle modules should fire.

— Synchronizers

- Implementing synchronous inputs for explicit modules with more than one input ports.



lllllllllll
llllllllllllllll
llllllllllllllllll
llllllllllllllllllll

Terminologies - data flow graph (DFG)
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® Functional graph: data flow graph (DFG)
— DFG: a graph representing the computational data flow
— opNode: a node in DFG representing a computational operation
— valNode: a node in DFG representing the data

— DFG edge: for example, in c =a + b, there are three edges
connecting valNodes (a, b, c) and opNode (+)
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® Physical graph: modulo routing resource graph (MRRG)
— MRRG: a graph representing the hardware resources and structure
- Itis a “3D” hardware resource graph extended in the time domain
— funcNode : a node in MRRG that implements an opNode in DFG

routingNode: a node in MRRG that transfers a valNode in DFG from a funcNode to another funcNode
— MRRG edge: connecting funcNodes and routingNodes

duplicate & modulo
module

D

‘«Ill'

graph
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Mapper & scheduler
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= Target: producing contexts that guide reconfigurable modules to perform correct
behavior during reconfiguration.

= Mapper

— Goal: mapping every opNode in DFG to a specific funcNode in MRRG, and mapping every valNode in
DFG to a connected sequence of routingNodes in MRRG.

— Method: integer linear programming (ILP) solver based on [15].

® Scheduler

— Goal: determining the fire time and synchronization method of each operator.

— Method: topological search.



. . /** A template tester.
RTL-level simulation :
* @param c the top design
* @param appTestHelper the class which is helpful
¥ when creating testers
® Pre-process */
class
— The input data stream is transferred into LSUs
. extends
through direct memory access (DMA), and contexts ’
are read by the top-level CGRA module. val testll
. . //pre-process
® Activating process io.en, ©
— Explicit modules can perform routing or operations testll
set by configuration controllers, if they have been //activating process
. i0.en, 1
fired by schedule controllers. o
™ Post-process VIR pOae
— The output data stream can be obtained from LSUs.

Fig. 3: A sample code of typical
tester 1n Pillars.



Project Tree

F—— app-mapping-results
— build.sht

— Makefile
F—— mrrg
— README.md
F—— scalastyle-config.xml
F—— scalastyle-test-config.xml
L— src

L— main

L — scala
L — tetriski
L pillars

|— archlib
F—— core
F—— examples

F—— hardware

F—— mapping

J//some pre-generated mapping resultis
J/the library dependencies in sbt
J/documents of APIs in Pillars
JS/some DFGs in DOT format

f/some ftigures in README

J/=some MRRGs

//the scalastyle file
J/the scalastyle file

f/the library of elements and blocks

JS/the core of Pillars

[//some examples showing how to use Pillars
S/hardware implemented in Chisel

J/mapping tools

F—— Pillars.scala

F—— testers

L util

J/testers in Pillars
ffutiliy for realizing hardware
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Experimental architectures - architecture skeleton

withalocal RF €7 & €72 ¢ €2 &

R PE with reduced operations
LRF LRF LRF LRF

operations: add, subtract, 10 10

multiply, shifts, and, or and xor torus.connectivity Global RF
T Tl I Tl L oL L
i F PEwith full set of operations | NlE B F KSR _é-—i)_ ) ;i_ _i | _E shariﬁa globalRF r <> F > r
Eoperations: add, subtract 7: E it it ij :_-_-i-::_-_: i L 11 It :Et It
i E

.

______________________ Ti Tt T Tt
______________________ RAETA N2 N2 N2 N2
| F COEBEEC— F  COlEER
: Block with a Ioad/store unit LRF LRF LRF LRF
______________________ Tl il vl
- N ————— . _
MEM

1

F €& R €&—> F <— R :

LRF LRF LRF LRF "

- i ; 1 (.
1

1

Full architecture Reduced architecture

MEM Storage component

Fig. 4. Variants of ADRES architecture skeleton.
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I Experimental architectures - processing element (PE) éi:::

= Simple PE Q
— 2 multiplexers for selecting input data

— 1 ALU for performing computation ¢ ¢

mux0 mux1

— 1 const unit for storing const value

— 1 RF with 2 registers for temporarily

holding arithmetic results ‘l r
const

alu

RF

out0 outl
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I Experimental architectures - processing element (PE) éi:::

= Complex PE

— 2 multiplexers for selecting input data
— 1 ALU for performing computation
— 1 const unit for storing const value

— 1 RF with 2 registers for temporarily
holding arithmetic results

— 2 additional multiplexers for bypass

muxBypass
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Floorplan & layout
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Fig. 5: Floorplan for Vivado
place & route.



Physical implementation & mapping results

= Maximum frequency
= FPGA area breakdown of the implementations
= Success rate of mapping within 7200 seconds for benchmarks in [16]

® Explicit modules (on the left of “/”) and auxiliary modules (on the right)

TABLE I. Physical implementation on ZC706 and mapping

results for each architecture.

Full Arch. Reduced Arch. Full Stuple | Reduced Simple
Fmax[MHz] 322 36.8 86.2 87
LUT 13604 / 4902 11061 / 4646 11570 / 4488 9515/ 4376
FF 1656 / 8248 1656 / 8213 1656 / 8056 1656 / 8050
DSP 48 /0 30/0 48 1 0 30/0
BRAM 2/0 2/0 2710 2/0
Success rate 97.8% 55.6% 98.9% 55.6%
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Q&A

= “Can there be several connected ALUs in one PE?”
— Of course yes, this is one of the core strengths of Pillars.

— Users can design their PE blocks with arbitrary connection and hierarchy.

®» “What is the overhead of using Pillars?”
— The auxiliary modules may introduce overhead.

— The configuration controllers are necessary for reconfiguration, and have fixed and slight overhead
according to the architecture.

— Users can determine the scale or abandoning of schedule controllers and synchronizers in a global
config file. So the overhead of them can be controlled.

— Researches about a better tradeoff between the overhead and function of auxiliary modules are in
our schedule.
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Thanks for listening!
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