
Pillars: An Integrated CGRA Design Framework
Yijiang Guo, Guojie Luo

Center for Energy-efficient Computing and Applications, Peking University, Beijing, China
Email: {yijiang, gluo}@pku.edu.cn

Abstract—In this paper, we propose Pillars, an integrated
CGRA design framework, to assist in design space exploration
and hardware optimization of CGRA. Pillars allows an architect
to describe a hierarchical CGRA design in a Scala-based lan-
guage and produce an in-memory model for both behavior and
structure. The model generates the RTL code and the structure
for reconfiguration. This structure enables application mapping
and context generation in a flattened representation generated
from a hierarchical model. Thus, CAD tools in Pillars are able
to map applications onto the architecture and produce contexts
that enable cycle-accurate simulations. In the experimental eval-
uation, we demonstrate the capability of Pillars to model CGRA
architectures by synthesizing variants of a widely known CGRA
architecture, ADRES, into FPGA overlays.

I. INTRODUCTION

Coarse-grained reconfigurable array (CGRA) is a class of
reconfigurable architecture that provides word-level granu-
larity in a reconfigurable array to overcome some of the
disadvantages of FPGAs. CGRAs provide the capability for
spatial, temporal and parallel computation, and hence can
outperform common computing systems in many applications.
CGRAs have been studied in academia for over a decade and
a variety of CGRA architectures have been proposed [1].

There exist software tools [2] that the exploration of fine-
grained FPGA architectures largely benefit from, while CGRA
design and exploration tools remain in an embryonic period.
Since design space for CGRAs is very large with many
architectural decisions, there are increasing demands of a tool
that permits the scientific exploration of CGRAs. Abstract
architecture modeling, computer-aided design (CAD) algo-
rithms, automatic RTL generator, and simulator should be
integrated into a unified framework to adapt to the requirement
of evaluating the area, speed, and power of designs over a set
of applications in a specific domain.

CCF [3] is a CGRA compilation and simulation framework
that is built on gem5 simulator [4], which does not simu-
late specific details like power and area. Stanford University
proposed an open-source hardware/software tool chain for
CGRA [5] that can rapidly create and validate alternative hard-
ware implementations, but the immutable hardware template
and the tediously long tool chain limit the adaptability for
modern CGRAs with heterogeneous PEs, complex memory
and interconnect. A recent framework CGRA-ME [6] permits
the modeling and exploration of a wide variety of CGRA
architectures and also facilitates research on CGRA mapping
algorithms. The drawback of CGRA-ME is that the RTL
generation rules written by experts are overmixed into the
architecture interpreter, and therefore, the generator becomes

brittle when developers iterate the logical implementation
cycles after the feedback from physical design.

We propose Pillars1, an open-source CGRA design frame-
work, to assist in design space exploration and hardware
optimization of CGRAs. Pillars provides a Scala-based archi-
tecture description language (ADL) for an architect to specify
a CGRA architecture, which produces a unified, high-quality
and synthesizable architectural abstraction. Auxiliary hard-
ware modules and Verilog RTL are automatically generated
according to the architectural abstraction, allowing physical
implementation on an FPGA as an overlay. An integer linear
programming (ILP) CAD tool can map data-flow graph (DFG)
onto the specified CGRA, generating contexts for CGRA RTL-
level simulation. Architecture designing, mapping, RTL gen-
eration and simulation are integrated in a unique framework,
which benefits the division and cooperation of architects, CAD
algorithm designers and hardware engineers.

II. PILLARS

Taken integration into consideration, the major tools in
Pillars are developed based on the Scala programming lan-
guage [7], a widely used host language for developing em-
bedded domain-specific language (eDSL) running on the Java
virtual machine (JVM). Chisel [8], a Scala embedded hardware
construction language that supports advanced hardware design
using highly parameterized generators and layered domain-
specific hardware languages, plays the role of Verilog RTL
generator in our framework.

A. Overview

Fig. 1 illustrates the overall Pillars framework, where com-
ponents and data-flow between them are shown. The com-
ponents of the framework are numbered in the sequence of
typical usage. The yellow portions represent tools or actions
in our framework. The blue portions represent intermediate
results during runtime. The grey portions represent inputs in
a specific format.

The inputs to the framework are models in Scala-based ADL
for the description of CGRA architectures 1© and commonly
accepted data-flow graphs (DFGs) [9] for the description
of applications 7©. The ADL of CGRA is parsed by an
architecture interpreter 2©, producing a hierarchical abstract
model of the depicted CGRA architecture 3©. In order to
obtain a high-quality representation for mapping and reduce
the complexity of RTL generation, the hierarchical abstract

1https://github.com/pku-dasys/pillars

model will be flattened 4©. The flattened abstract model in
device will produce corresponding basic Chisel modules 5©
and modulo routing resource graph (MRRG) [10] to model
CGRAs 6©.

Mapper receives the DFG for a specific application as input,
as well as the MRRG model of the CGRA architecture, to map
the DFG onto the CGRA, and scheduler will reconstruct the
schedule of mapping results 8©. Together with the hierarchical
abstract model, the products of mapper and scheduler can be
translated into contexts that will be applied in simulation.

The auxiliary modules will be automatically generated de-
pending on the regions of basic modules in the hierarchical
abstract model to support cycle-accurate simulation, and in-
terconnection will be realized 9©. As a result, we will gain
a Chisel top design 10© and thus the automatic generation of
Verilog RTL 11© can be carried out.

We implement a component that aids simulator code gen-
eration 12©. With the help of Chisel I/O tester and Verila-
tor [11], a power RTL simulator used by RocketChip [12],
we can obtain the result of cycle-accurate simulation for
functional verification 13©. In Section III, we demonstrate
FPGA-overlay implementations of variants of the ADRES
[13] CGRA architecture 14©. Combining the performance, area
and consumption of FPGA-overlay 15© with the mappability,
throughput and runtime from mapper, we can evaluate the
performance, power, and area of depicted designs of CGRA
over a set of applications in a domain of interest 16©.

B. Architecture Description

We employ a hierarchical design and flattened implementa-
tion methodology in our framework. The ADL for architecture
description maintains its hierarchical heritage while all phys-
ical implementations are flattened. Only the basic elements
of architecture are still corresponding to hardware modules
while redundant nodes and layers will be optimized. Our
methodology shields architects from complex detail of low-
level hardware and enables hardware engineers to focus on

the hardware generation of a few categories of fundamental
modules, which separates the concerns of architects and hard-
ware engineers.

The Pillars framework has the ability to model various
CGRA architectures via Scala-based ADL, which inherits
the syntax of Scala. Blocks and elements are fundamental
components in our ADL. Blocks are able to represent the
hierarchy, and each element shares a particular identification
number with corresponding Chisel hardware implementation.
A block can be composed of several sub-blocks and elements.
There are five alternatives of predefined elements, multiplexer,
const unit, arithmetic logical unit (ALU), load/store unit (LSU)
and register files (RF).

Fig. 2 illustrates an example of architecture description. The
block contains an ALU able to perform computation between
the selected input and an immediate operand, and a subblock
with 2 input ports and 1 output port. All blocks and elements
are identified by names, and if they share a collective parent
block, their name must be different. Each block can have
any number of input and output ports through function calls,
while an element should guarantee the same number of input
and output ports with corresponding hardware, and names
of them can be also specified. Connections between parent
block, subblocks and elements can be added in a particular
form. Elements have some parameters to define the hardware
specifications. Since the block is declared as a configuration
region, so all elements and elements in its subblocks share
an auto-generated configuration controller, which is capable
of storing and distributing configurations.

C. Mapper & Scheduler

The inputs of the mapper and scheduler are DFG and
MRRG. A DFG is written in a dot graph format [14] that
includes metadata, such as labeling inputs, outputs, operations,
and operands within the computation. MRRG [10] has been
used extensively in studies of CGRA due to its capability
of modeling multiple contexts. The context repeats every

 Flattened
Abstract
Model

 Simulator
Code Generation

 Data-Flow
Graph

 Modulo
Routing

Resource Graph

 Mapper &
Scheduler

 Scala-based
Architecture
Description

 Verilator

 Basic Chisel
Modules

 Chisel Top
Design

 Auxiliary Modules
Auto-generation

 Architecture
Interpreter

 Verilog RTL

 Hierarchical
Abstract
Model

 FPGA
Synthesis, Place

and Route

 FPGA-overlay
Performance, Area and

Power Consumption

Cycle-accurate
Simulation

Contexts

Mapping
Results

Mappability, Throughput
and Runtime

Architecture
Evaluation

 Performance, Area
and Power Estimation

for Benchmarks

Regions

Fig. 1: Pillars framework overview showing the main components.

in1

out0

alu0
const0

BlockImmediate

inputA

inputB

out0

out0

class BlockImmediate(name: String) extends BlockTrait {

 setConfigRegion()
 addInPorts(Array("in0", "in1"))
 addOutPorts(Array("out0"))

 // A multiplexer that can choose a data source
 // for the port "inputA" of the ALU.
 val mux0 = new ElementMux("mux0", muxParams)
 mux0.addInPorts(Array("input0", "input1"))
 mux0.addOutPorts(Array("out0"))
 addElement(mux0)

 // An ALU that can perform some operations.
 val alu0 = new ElementAlu("alu0", aluOpList,

 supBypass = true, aluParams)
 alu0.addInPorts(Array("inputA", "inputB"))
 alu0.addOutPorts(Array("out0"))
 addElement(alu0)

 // A const unit connected to the port "inputB" of ALU.
 val const0 = new ElementConst("const0", constParams)
 const0.addOutPorts(Array("out0"))
 addElement(const0)

 // A black box with 2 input ports and 1 output port.
 val subBLock = new BlackBox("subBlock0")

 // Interconnection inside this block.
 addConnect(term("in0") -> mux0 / "input0")
 addConnect(term("in1") -> mux0 / "input1")
 addConnect(mux0 / "out0" -> alu0 / "inputA")
 addConnect(const0 / "out0" -> alu0 / "inputB")
 addConnect(term("in1") -> subBLock / "input0")
 addConnect(alu0 / "out0" -> subBLock / "input1")

 addConnect(subBLock / "out0" -> term("out0"))

}

in0

mux0
out0

input0 input1

subBlock0
input0

input1
out0

Fig. 2: An example of the Scala-based ADL. The settings of name and parameters are
omitted.

/** A template tester.
 *
 * @param c the top design
 * @param appTestHelper the class which is helpful
 * when creating testers
 */
class TemplateTester(c: TopModule,
 appTestHelper: AppTestHelper)
 extends ApplicationTester(c, appTestHelper) {

 val testII = appTestHelper.getTestII()

 //pre-process
 poke(c.io.en, 0)
 inputData()
 inputConfig(testII)

 //activating process
 poke(c.io.en, 1)
 checkPortOutsWithInput(testII)

 //post-process
 checkLSUData()

}

Fig. 3: A sample code of typical
tester in Pillars.

II (initiation interval) cycles, with a new iteration of the
application loop starting each repetition. The MRRG, which
is the structure for reconfiguration, can be generated in Pillars
according to the flattened abstract model and II.

The target of our mapper and scheduler is to determine
where and when the operators in a DFG fire. We map each
operator in DFG onto a functional node in MRRG with an
ILP mapper. The ILP formulation of mapper is mainly based
on Chin’s approach [15]. The fire time and synchronization
strategy of each operator are determined with a scheduler using
topological search.

D. Hardware Generation
Basic Chisel modules, also called explicit modules, will be

generated with the flattened abstract model at first. Auxiliary
modules are automatically inferred to aid reconfiguration and
running applications correctly. After the wires are connected,
a Chisel top design is produced, which can generate the RTL
code and enable cycle-accurate simulation.

Explicit modules corresponding to elements are the corner-
stones of hardware generation. According to the parameters set
up by users in the ADL, an explicit module can be generated
with different data widths, sizes, logics and so on.

Pillars hides the generation process of auxiliary modules
from architects while hardware engineers can improve the
performance and quality of them in an arbitrary way. There
are three kinds of auxiliary modules: configuration controllers,
schedule controllers and synchronizers. Configuration con-
trollers can repeat stored configurations every II cycles and
distribute them to corresponding explicit modules. To control
the cycle modules should fire, we employ the schedule con-
trollers to fire ALUs and LSUs when operators are mapped
onto them. Synchronizers can implement synchronous inputs
for explicit modules with more than one input ports.

E. RTL-level Simulation

To simplify the simulator code generation, we define three
processes of programming: pre-process, activating process and
post-process. In the pre-process, the input data stream is
transferred into LSUs through direct memory access (DMA),
and contexts are read by the top-level CGRA module. The
necessary contexts for the execution of an application are
generated from the results of mapper and scheduler. After
the top module is enabled, the activating process starts and
auxiliary modules are fired. Explicit modules can perform
routing or operations set by configuration controllers, if they
have been fired by schedule controllers. In the post-process, we
can get the output data stream from LSUs. The post-process
is not necessary if there are no store operations in the targeted
DFG.

As shown in Fig. 3, a few templates and tools in Pillars
are useful to construct the simulation processes and produce
classes in the specific format of Chisel testers using the
Verilator backend. Thus, we can obtain the result of cycle-
accurate simulation. The expected behaviors of CGRA can be
verified at output ports of the top module during the activating
process or the data obtained from LSUs during the post-
process.

III. EXPERIMENTAL STUDY

A. Experimental Architectures

In our study, we model four CGRA architectures with two
different PE designs (Fig. 6a & b), which are based on variants
of the ADRES [13] architecture skeleton (Fig. 4). The complex
PE (Fig. 6b) has two additional bypass multiplexers, which are
also adopted in CGRA-ME [6]. The prototype of the full and
reduced architecture skeletons in Fig. 4 are proposed in [16].

F

LRF

F

LRF

F

LRF

F

LRF

F

LRF

F

LRF

F

LRF

F

LRF

F

LRF

F F FF

F

LRF

F

LRF

F

LRF

Global RF

IO

LSU

LSU

LSU

LSU

MEM

MEM

MEM

MEM

F

LRF

F

LRF

R

LRF

F

LRF

F

LRF

R

LRF

F

LRF

R

LRF

R

LRF

F F FF

R

LRF

F

LRF

R

LRF

Global RF

IO

LSU

LSU

LSU

LSU

MEM

MEM

MEM

MEM

Full architecture Reduced architecture

Fig. 4: Variants of ADRES architecture skeleton. Fig. 5: Floorplan for Vivado
place & route.

const

mux0 mux1

inputs

RF
in

out0 out1

output

(a) Simple PE.

const

mux0 mux1

inputs

RF
in

out0 out1

output

muxBp

m
u
xO

u
t

(b) Complex PE with two additional
bypass multiplexers.

Fig. 6: Several architectures of PE with a local RF.

(a) Reduced-simple arch.
generated from Pillars.

(b) Full arch. generated from
Pillars.

Fig. 7: Layout of selected FPGA implementations.

The architectures in our experiments are denoted as Full, Full-
Simple, Reduced, and Reduced-Simple, respectively.

In Fig. 4, ALUs in full PEs (yellow) can perform a full set of
operations: add, subtract, multiply, shifts, and, or, and
xor, while those in reduced PEs (blue) only have the capability
of add and subtract. PEs in the same row share a block with
a load/store unit. Similar to the original ADRES architecture,
the PEs in the top row share a global RF instead of a local RF.
The full architecture has torus connectivity between top and
bottom rows, and between leftmost and rightmost columns.
All the above architectures are implemented with a 32-bit data
width.

B. Physical Implementation and Mapping Results

We target the Xilinx ZYNQ-7000 ZC706 evaluation board
using Vivado 2019.2 for physical implementation. Fig. 5
presents the floorplan for all architectures under test by Verilog
generated from Pillars. Considering the resource distribu-
tion, we interleave two neighboring PE columns to satisfy
the resource requirement and improve the performance. The
blocks with LSU are located at the center because of the
communications with PEs.

Fig. 7 exhibits the layout of selected FPGA implementations
in our experiments. Table I shows the maximum frequency and

FPGA area breakdown of the implementations, as well as the
success rate of mapping within 7200 seconds for benchmarks
in [16] for 10 times over different random seeds. The resource
usages of both explicit modules (on the left of “/”) and
auxiliary modules (on the right) are reported. For architectures
with Reduced skeleton, benchmarks with many multiplication
operations cannot find feasible mapping within the time limit,
since there are only 10 multipliers and no toroid connections.

TABLE I: Physical implementation on ZC706 and mapping
results for each architecture.

Full Arch. Reduced Arch. Full-Simple
Arch.

Reduced-Simple
Arch.

Fmax[MHz] 32.2 36.8 86.2 87

LUT 13604 / 4902 11061 / 4646 11570 / 4488 9515 / 4376

FF 1656 / 8248 1656 / 8213 1656 / 8056 1656 / 8050

DSP 48 / 0 30 / 0 48 / 0 30 / 0

BRAM 2 / 0 2 / 0 2 / 0 2 / 0

Success rate 97.8% 55.6% 98.9% 55.6%

IV. CONCLUSION

We propose Pillars, a powerful and integrated CGRA design
framework with consistent RTL and context generation. The
capabilities of Pillars to model various architectures, generate
RTL codes, map applications for context generation, and
perform cycle-accurate simulation are demonstrated.

REFERENCES

[1] M. Wijtvliet, L. Waeijen, and H. Corporaal, “Coarse grained reconfig-
urable architectures in the past 25 years: Overview and classification,”
in International Conference on Embedded Computer Systems: Architec-
tures, Modeling and Simulation (SAMOS), 2016.

[2] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,
M. Nasr, S. Wang, T. Liu, N. Ahmed et al., “VTR 7.0: Next generation
architecture and CAD system for FPGAs,” ACM Transactions on Re-
configurable Technology and Systems (TRETS), vol. 7, no. 2, pp. 1–30,
2014.

[3] S. Dave and A. Shrivastava, “CCF: A CGRA compilation framework,”
https://github.com/MPSLab-ASU/ccf, 2018.

[4] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[5] A. H. C. Stanford, “Documentation for the entire CGRAFlow,” https:
//github.com/StanfordAHA/CGRAFlowDoc, 2019.

[6] S. A. Chin, N. Sakamoto, A. Rui, J. Zhao, J. H. Kim, Y. Hara-Azumi, and
J. Anderson, “CGRA-ME: A unified framework for CGRA modelling
and exploration,” in International Conference on Application-specific
Systems, Architectures and Processors (ASAP), 2017.

[7] M. Odersky, L. Spoon, and B. Venners, “Programming in Scala: Updated
for Scala 2.12,” 2016.

[8] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: constructing hardware in a
Scala embedded language,” in Design Automation Conference (DAC),
2012.

[9] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization (CGO), 2004.

[10] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
“DRESC: A retargetable compiler for coarse-grained reconfigurable ar-
chitectures,” in International Conference on Field-Programmable Tech-
nology (FPT), 2002.

[11] W. Snyder, “Verilator and SystemPerl,” in North American SystemC
Users’ Group (NASCUG) Meeting at Design Automation Conference,
2004.

[12] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz et al., “The
rocket chip generator,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

[13] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
“ADRES: An architecture with tightly coupled VLIW processor and
coarse-grained reconfigurable matrix,” in International Conference on
Field Programmable Logic and Applications (FPL), 2003.

[14] E. R. Gansner and S. C. North, “An open graph visualization system
and its applications to software engineering,” Software: practice and
experience, vol. 30, no. 11, pp. 1203–1233, 2000.

[15] S. A. Chin and J. H. Anderson, “An architecture-agnostic integer linear
programming approach to CGRA mapping,” in Design Automation
Conference (DAC), 2018.

[16] S. A. Chin, K. P. Niu, M. Walker, S. Yin, A. Mertens, J. Lee, and J. H.
Anderson, “Architecture exploration of standard-cell and FPGA-overlay
CGRAs using the open-source CGRA-ME framework,” in International
Symposium on Physical Design (ISPD), 2018.

