
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Automatically Building Digital Symbol Libraries

Arjun Rakheja
Poolesville High School
Poolesville, MD, USA

arjun.rakheja@gmail.com

Digital circuit symbols do not currently have commonly
accepted open standards for the formats of such symbols.
Consequently, digital cell libraries often come in proprietary
formats. The purpose of this project is to automatically create a
digital symbol library from a liberty file in the SkyWater pdk.
An algorithm was developed in Python and a standard digital
cell library was created in KiCad and XSCHEM. The algorithm
is able to parse through the liberty file, store information on the
cells, and successfully output a digital symbol library. In future
work, steps will be taken to automatically create a spice netlist
from the liberty file. Additionally, the standard digital cell
library

I. IMPORTANCE OF PROBLEM

When circuit chips manufacturing and its software were
first released, it was free to use. Eventually, the software
became licensed, and only the large companies and rich
research institutions could afford them. Eventually, the
software became dominated by three large companies:
Cadence, Mentor Graphics, and Synopsys. These
manufacturers created Process Design Kits (PDK’s) and sold
them so the public can use their software. The research
involved in this project is one of the many aspects involved to
allow engineers to manufacture chips freely with open source
software. One important part of chip manufacturing are digital
standard cell libraries. These are collections of low-level logic
functions. Most standard cell libraries have a limited number
of cell types, including INVERT and BUFFER; then AND,
OR, XOR, XNOR, which come in variations of 2, 3,and 4.
Additionally, there are a few useful combinations of gates
AOI (and-or-invert) and OAI (or-and-invert), MUX
(multiplexer, usually 2- and 4-input), TRIINV and TRIBUF
(tri-state inverter and buffer, and FA and HA (full- and half-
adder circuits).

The cells in standard cell libraries are organized with
fixed-height, variable-width full-custom cells. The libraries
being fixed height is important. This enables the cells to be
placed in a fixed number of rows and an unlimited number of
columns, making the process of automating the digital layout
of the cell easier. The cells are typically optimized full-custom
layouts, which minimize delays and area. However, the
descriptions of digital standard cell libraries are not accessible
by the public, and even if they are they usually are not
readable. Descriptions of digital standard cell libraries often
come in a proprietary format (such as Synopsys), a proprietary

and binary, human unreadable format such as Open Access,
or have no symbols at all. Instead, most open source schematic
entry tools have their own unique symbol formats.

However, the liberty file format is very often used for
every digital standard cell library offered as part of a foundry
process design kit (PDK). The liberty file contains “functions”
that describes the Boolean function of a digital logic gate as a
Boolean equation. This liberty file can be parsed through to
identify the different digital logic gates that are being used.
Unfortunately, the liberty file format allows many ways for
describing a Boolean function. For example, to represent to
represent "A AND B", you can have "A & B", "A B", and
possibly "A * B" as well.

Not much research has been done in this component of
EDA development. Hirotaka Terai and his colleagues[13]
have done research on a standardized digital cell library for a
single flux quantum circuit. Their research is similar to mine
in that they are creating a cell library out of complicated and
proprietary pieces of code. Additionally, Miguel Miranda and
his colleagues[7] have done research on statistical
comparisons in Electronic Automation Design with the Monte
Carlo computational algorithms.

II. OBJECTIVE

The goal of this research was to take a disorganized,
complicated liberty file and automatically create a digital
symbol library based on a known set of standard cells. This set
of known symbols was created in KiCad and XSCHEM. Cell
information would be gathered and stored by parsing the
liberty file to create a digital symbol library in KiCad and
XSCHEM.

III. METHODOLOGY

Python was used to create the liberty file parser. The first
step was to read the liberty file into a list. The main function
called parser() was written to do so. This function opened the
liberty file and created a list, where each element was a line in
the file (in chronological order). A function called
get_cell_names() was written, which took the list of lines and
searched for the line with the cell name. This denotes the
beginning of the cell. The function stored the cell names of
each cell in the liberty file into a list called cell_names. Every

time the get_cell_names() finds a cell name (the beginning of
a cell) it stores that line’s number in a list called cell_divisions
to keep track of the start and ends of each cell’s lines.

The next step was to store the functions of each cell. Using
cell_divisions, a function called get_function searched
through only the liberty file’s lines belonging to that cell for
its information. The program parsed through this group of
lines to find the function line of the cell name. Since some
cells have multiple functions, in the list of functions, called
cell_function, each element is a list containing the functions
for each cell. For example: cell_function = [[A&B],[AORB,
A&B&C]]. This would be cell_functions if the liberty file had
two cells, where one cell was an AND gate, and the other cell
had two outputs: an OR function and a triple AND function.
The procedure then returns this list of cell functions.

After, the program had to store the footprint of the cell.
The same methodology as the get_function() function was
used to create a function called get_footprint. This function
parses through the group of lines from the liberty file
(determined by the cell_divisions list) and stores the footprint
of each cell in a list, and then returns this list. Since cells only
have one footprint, this function is a little simpler than
get_functions.

Then, the next step was to determine if the cell was a
sequential gate, and what type was it. The sequential cell
category was divided into two groups: flip flops and latches.
To determine if the cells in the liberty file was a flip flop, a
procedure called get_sequential. This procedure uses
cell_divisions and searches the cell lines in the liberty file to
find the string “ff (“ which denotes the cell as a flip flop. Once
it is determined that the cell is a flip flop, the parser finds the
values for the following variables: Clock, preset, clear, and
next state. Additionally, if the “ff (“ string has two elements
after the parentheses("IQ","IQ_N), that means that the flip
flop has two outputs. All this information is appended to a
temporary list, and this list is appended to a larger list called
sequential_cells. Each element in this list contains the
sequential information for the cell, and an empty list if the cell
is not sequential. Another procedure called get_latch
determines whether the cell in the liberty file is a latch. This
procedure uses cell_divisions to search for the string “LATCH
(”. This string denotes that the cell in the SkyWater liberty file
is a Latch gate. Then the parser finds values for the following
variables: data_in, clear, preset, and enable. Additionally, if
the “LATCH (“ string has two elements after the
parentheses("IQ","IQ_N), it has two outputs. Similar to the
get_sequential procedure, all this information is stored in a
temporary list for each cell, and this list is appended to a larger
list called latch_cells. Each element in latch_cells is a list that
contains all the latch information, or an empty list. After that,
another procedure was written called get_pin that stores the
pins of each cell. Again, using cell_divisions, the lines in each
cell were parsed, looking for the string“ pin(“, which
contained a letter(or letter plus a number) representing the
name of the pin.

The program then parsed through the lines after the pin to
determine if it was an input or output. The pins for each cell
were stored in two separate lists based on if they were an input

or output (output pins were stored in the second list). A list
containing the inputs and outputs is appended to a larger list
called pin_cells, where each element is two lists that represent
the input and output pins of that cell. Then, the program
combined all the information for each cell into a dictionary
called cell_dict. Since all the functions, footprints, sequential
information, latch information, and pins were parsed through
chronologically, the indexes matched with the index of the cell
name. For example, if the second cell in the liberty file was
called “sky_cell050”, all the information of the cell will be in
the second index of all these lists created in the previous
procedures. In the procedure make_cells, every key in
cell_dict is the cell name and the value of each key is a list
containing all the information that was parsed from the liberty
file.

Finally, the map_cells procedure was written to determine
what kind of gate each cell is. My mentor, Mr. Tim Edwards,
and I created a text file called gate_list. This file contained the
gate type and its properties to determine if that is the correct
gate. By parsing through this file and comparing it to the
information in the grand cell dictionary, the program was able
to identify the properties of non-sequential gates and find what
type each cell was, and store it in a new dictionary called
gate_type. For Latches and Flip Flops, a naming system was
implemented. The base cell type name for Latches and Flip
Flops was “LATCH” and “DFF” respectively. Then based on
the data collected by get_sequential and get_latch, additional
letters are appended to the cell type name. For example, if the
value of “clear” is “!R”, then you had a letter “S” to the cell
type name. The function map_cells returns the dictionary
gate_type, where the keys are the cell names from liberty file
and the values are the cell’s type (AND3, DFFS, LATCH,
XNOR2, etc.) Finally, after mapping the cells, the symbol
library of the liberty file was created. Using KiCad, a symbol
library of standard cells was drawn. The library information is
stored in a KICAD_SYM file, which contains all the pins
names and drawing positions of each symbol (Basically
contains the directions for KiCad to draw and label a symbol).
Using the dictionary created in map_cells, the cell information
is used to find lines in the KICAD_SYM file that code for the
designated symbol, and write those lines to a new
KICAD_SYM file for the liberty file being parsed through.
Then the correct cell and pin names were substituted into the
new KICAD_SYM file. When opening the KICAD_SYM file
in KiCad, a symbol library appears with all of the symbols in
the liberty file.

Repository

My open source repository is arjunr10/eda-
symbol_libraries

(https://github.com/arjunr10/eda-symbol_libraries)

IV. FUTURE

Future improvements I could do is to expand the gate_list
text file to contain more cell types. Additionally, the next step
would be to automatically output a spice netlist. The
XSCHEM library is still currently progress, but it is the same
concept as creating it in KICAD.

ACKNOWLEDGMENT

I would like to acknowledge Mr. Timothy Edwards for
mentoring me throughout this project. I would not have been

able to develop this program without his guidance. I would
also like to acknowledge Mr. Stefan Schippers for creating
XSCHEM and the KiCad developers team for creating KiCad.

REFERENCES

[1] Stambaugh, W. (n.d.). KiCad. Retrieved September 7, 2020, from https://kicad-pcb.org/about/kicad/)

[2] Schippers, S. (n.d.). XSCHEM : schematic capture and netlisting EDA tool. Retrieved September 7, 2020, from https://xschem.sourceforge.io/stefan/
index.html

[3] Fairhead, H. (2018, September 28). Introduction to Boolean Logic. Retrieved June 14, 2020, from https://www.i-programmer.info/babbages-bag/235-logic-
logic-everything-is-logic.htmlK. Elissa, “Title of paper if known,” unpublished.

[4] Hurtarte, J. S. (n.d.). Chapter 6 - Electronic Design Automation. Understanding Fabless IC Technology, 55-64. https://doi.org/10.1016/B978-075067944-
2/50007-2

[5] Martins, M. (n.d.). Open Cell Library in 15nm FreePDK Technology. Association for Computeing Machinery.
https://dl.acm.org/doi/abs/10.1145/2717764.2717783M. Young, The Technical Writer’s Handbook. Mill Valley, CA: University Science, 1989.

[6] Microspot. (n.d.). Electronic Symbol Libraries. Microspot. Retrieved June 14, 2020, from https://www.microspot.com/products/libraries/electronic-symbol-
liraries-2.htm

[7] Miranda, M. (n.d.). Fast and accurate statistical characterization of standard cell libraries. Microelectronics Reliability.
https://doi.org/10.1016/j.microrel.2011.05.016

[8] Silvaco. (n.d.). Automatic Configuration From a Liberty File. Silvaco. Retrieved June 14, 2020, from
https://www.silvaco.com/examples/accucell/section1/example2/index.html

[9] Simucad. (n.d.). Introduction to cell characterization [Infographic]. https://www.silvaco.com/content/training/Cell_Char_Intro.pdf

[10] Synopsys. (n.d.). Standard Cell Libraries. Synopsys. Retrieved June 14, 2020, from https://www.synopsys.com/dw/ipdir.php?ds=dwc_standard_cell

[11] Tehranipoor, M. (n.d.). Chapter 2 - A Quick Overview of Electronic Hardware. Hardware Security A Hands-On Learning Approach, 23-45.
https://doi.org/10.1016/B978-0-12-812477-2.00007-1

[12] Teman, A. (n.d.). Digital VLSI Design Lecture 1. Retrieved June 14, 2020, from http://www.eng.biu.ac.il/temanad/files/2017/02/Lecture-4-Standard-Cell-
Libraries.pdf

[13] Terai, H. (n.d.). A single flux quantum standard logic cell library. Physica C: Superconductivity. https://doi.org/10.1016/S0921-4534(02)01759-8

[14] University of California, Berkeley. (n.d.). Liberty Reference Manual (Version 2007.03). Retrieved June 14, 2020, from
https://people.eecs.berkeley.edu/~alanmi/publications/other/liberty07_03.pdf

[15] Worthman, E. (2014, April 14). A Guide To Advanced Process Design Kits. Semiconductor Engineering. Retrieved June 14, 2020, from
https://semiengineering.com/a-guide-to-advanced-process-design-kits/

