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Approximate Computing

Computational quality (accuracy of results) vs. 
computational effort (execution time, area, power, or 
energy).

PDP = 0.69 / PSNR = 29.8 dBPDP = 1.00 / PSNR = inf dB

PDP = 0.62 / PSNR = 22.4 dB PDP = 0.61 / PSNR = 19.52 dB
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Motivation

Approximate Logic Synthesis (ALS)
Generate approximate circuits from accurate 
implementations.

Functional simplification:
Netlist transformation.
Boolean re-writing.
Approximate High-Level Synthesis.

Missing an open-source framework for 
netlist transformation-based.
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Fig. 1. An overview of our automated AxLS framework. An XML representation of the synthesized netlist is created to manipulate it according to the
approximation criteria defined within AxLS. AxLS uses external tools for synthesis and simulation of the accurate and approximate versions of the netlist.

<?xml version="1.0" encoding="UTF-8"?>
<root>

<node name="INV_X2" var="u19">
<input name="A1" wire="n14" />
<output name="ZN" wire="n16" />

</node>
<node name="OAI21_X1" var="u23">
<input name="A1" wire="n14" />
<input name="A2" wire="n20" />
<output name="ZN" wire="n21" />

</node>
<node name="NAND2_X2" var="u33">
<input name="A1" wire="n16" />
<input name="A2" wire="n14" />
<output name="ZN" wire="S[1]" />

</node>
[ ... ]

<circuitinputs>
<input var="in[0]"/>
<input var="in[1]"/>

</circuitinputs>
<circuitoutputs>
<output var="S[0]"/>
<output var="S[1]"/>

</circuitoutputs>
</root>

Fig. 2. XML code for a netlist description example.

The approximate netlist can be simulated to produce ap-
proximate outputs. AxLS provides functionality to compare
the approximate results against accurate ones to obtain an
error distribution in the form of a probability mass function,
commonly use for accuracy estimations [14], and to generate
values for different error metrics from it (for instance, those
described in [13]). Although not depicted in Figure 1, the
corresponding testbench is required for any simulation, which
generates an output file with the approximate results. For this,
representative test vectors are required for the input bit-width
of the circuit to be approximated.

Once an approximate netlist is generated with satisfactory
accuracy, the synthesis tool can be used to produce circuit
metrics such as area, delay, and power consumption.

III. EVALUATION

The current state of AxLS has been implemented using
Python language. As depicted, AxLS relies on external tools
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• input/output. Those tags are used to represent a connection between a logic gate

and an internal circuit wire. It contains the following attributes.

– name: Name of the input/output of the circuit. Obtained from the Technology

Library used to synthesize the circuit.

– wire: Name of the cable to which the wire is connected in a given input/output.

– delete** : If true, the logic needed exclusively to produce this wire signal could

be deprecated.

Using this format, the circuit is represented as a list of nodes in XML, each node

represents a logic gate with their inter-connections to other gates. An example of

the XML file is shown in Figure 4.2.

<?[PO�YHUVLRQ="1.0"�HQFRGLQJ="UTF-8"?>

<rooW>
���<node�QDPH="INV_X2"�YDU="X19">
������<inpXW�QDPH="A1"�ZLUH="Q14"�/>
������<oXWpXW�QDPH="ZN"�ZLUH="Q16"�/>
���</node>
���<node�QDPH="OAI21_X1"�YDU="X23">
������<inpXW�QDPH="A1"�ZLUH="Q14"�/>
������<inpXW�QDPH="A2"�ZLUH="Q20"�/>
������<oXWpXW�QDPH="ZN"�ZLUH="Q21"�/>
���</node>
���<node�QDPH="NAND2_X2"�YDU="X33">
������<inpXW�QDPH="A1"�ZLUH="Q16"�/>
������<inpXW�QDPH="A2"�ZLUH="Q14"�/>
������<oXWpXW�QDPH="ZN"�ZLUH="S[1]"�/>
���</node>
���[�...�]

���<circXiWinpXWV>
������<inpXW�YDU="LQ[0]"/>
������<inpXW�YDU="LQ[1]"/>
���</circXiWinpXWV>
���<circXiWoXWpXWV>
������<oXWpXW�YDU="S[0]"/>
������<oXWpXW�YDU="S[1]"/>
���</circXiWoXWpXWV>
</rooW>
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Figure 4.2: Sample of the circuit represented as an XML file.

Some of the benefits of this representation is that these files could be saved and

loaded quickly. The Python Element Tree library allows searches inside the structure

as if it were a database using XPath syntax. XPath syntax could search XML tags

filtering them by their attribute values or navigate through the circuit. For example,

with the following line:

root.findall("./node/input[@wire=’n54’]/..")

The algorithm gets every node which has an input connected to wire n54. Once

the circuit is represented in XML, two techniques were implemented to reduce the

Fig. 3. DAG representing an XML netlist example.

for synthesis and simulation. Currently, AxLS uses the Yosys
tool [15] for circuit synthesis and circuit area estimation, and
Icarus Verilog [16] for netlist simulation. The results here
presented were obtained using the NanGate 15nm technology
library.

We present an evaluation of AxLS for arithmetic circuits,
particularly standard adders. As approximate criteria, the fol-
lowing steps have been applied:

• Considering a primary input bit constant, all affected
nodes (gates) are explored. A node is considered constant
if all its inputs are constant, and then all dependencies of
such node are explored. Each of the considered nodes
is pruned, one by one, and accuracy is checked at each
step. If the output error goes beyond the given threshold,
the last pruning is reversed, and other nodes are further
explored.

• After exploring from the perspective of the primary in-
puts, nodes are explored considering a primary output bit
constant. All nodes affecting such output are considered,
and a one by one pruning is also performed with accuracy
evaluations after every step. Similar to before, if the
output error goes beyond the given threshold, the last
pruning step is reversed, and other nodes affecting such
output are explored.

AxLS – Netlist Generation
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AxLS – XML-based Netlist
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approximation criteria defined within AxLS. AxLS uses external tools for synthesis and simulation of the accurate and approximate versions of the netlist.
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The approximate netlist can be simulated to produce ap-
proximate outputs. AxLS provides functionality to compare
the approximate results against accurate ones to obtain an
error distribution in the form of a probability mass function,
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described in [13]). Although not depicted in Figure 1, the
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generates an output file with the approximate results. For this,
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of the circuit to be approximated.
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Python language. As depicted, AxLS relies on external tools
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Some of the benefits of this representation is that these files could be saved and

loaded quickly. The Python Element Tree library allows searches inside the structure

as if it were a database using XPath syntax. XPath syntax could search XML tags

filtering them by their attribute values or navigate through the circuit. For example,
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for synthesis and simulation. Currently, AxLS uses the Yosys
tool [15] for circuit synthesis and circuit area estimation, and
Icarus Verilog [16] for netlist simulation. The results here
presented were obtained using the NanGate 15nm technology
library.

We present an evaluation of AxLS for arithmetic circuits,
particularly standard adders. As approximate criteria, the fol-
lowing steps have been applied:

• Considering a primary input bit constant, all affected
nodes (gates) are explored. A node is considered constant
if all its inputs are constant, and then all dependencies of
such node are explored. Each of the considered nodes
is pruned, one by one, and accuracy is checked at each
step. If the output error goes beyond the given threshold,
the last pruning is reversed, and other nodes are further
explored.

• After exploring from the perspective of the primary in-
puts, nodes are explored considering a primary output bit
constant. All nodes affecting such output are considered,
and a one by one pruning is also performed with accuracy
evaluations after every step. Similar to before, if the
output error goes beyond the given threshold, the last
pruning step is reversed, and other nodes affecting such
output are explored.
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Some of the benefits of this representation is that these files could be saved and

loaded quickly. The Python Element Tree library allows searches inside the structure

as if it were a database using XPath syntax. XPath syntax could search XML tags

filtering them by their attribute values or navigate through the circuit. For example,

with the following line:

root.findall("./node/input[@wire=’n54’]/..")

The algorithm gets every node which has an input connected to wire n54. Once

the circuit is represented in XML, two techniques were implemented to reduce the
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for synthesis and simulation. Currently, AxLS uses the Yosys
tool [15] for circuit synthesis and circuit area estimation, and
Icarus Verilog [16] for netlist simulation. The results here
presented were obtained using the NanGate 15nm technology
library.

We present an evaluation of AxLS for arithmetic circuits,
particularly standard adders. As approximate criteria, the fol-
lowing steps have been applied:

• Considering a primary input bit constant, all affected
nodes (gates) are explored. A node is considered constant
if all its inputs are constant, and then all dependencies of
such node are explored. Each of the considered nodes
is pruned, one by one, and accuracy is checked at each
step. If the output error goes beyond the given threshold,
the last pruning is reversed, and other nodes are further
explored.

• After exploring from the perspective of the primary in-
puts, nodes are explored considering a primary output bit
constant. All nodes affecting such output are considered,
and a one by one pruning is also performed with accuracy
evaluations after every step. Similar to before, if the
output error goes beyond the given threshold, the last
pruning step is reversed, and other nodes affecting such
output are explored.

XML Netlist Description

DAG of Netlist Description
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for synthesis and simulation. Currently, AxLS uses the Yosys
tool [15] for circuit synthesis and circuit area estimation, and
Icarus Verilog [16] for netlist simulation. The results here
presented were obtained using the NanGate 15nm technology
library.

We present an evaluation of AxLS for arithmetic circuits,
particularly standard adders. As approximate criteria, the fol-
lowing steps have been applied:

• Considering a primary input bit constant, all affected
nodes (gates) are explored. A node is considered constant
if all its inputs are constant, and then all dependencies of
such node are explored. Each of the considered nodes
is pruned, one by one, and accuracy is checked at each
step. If the output error goes beyond the given threshold,
the last pruning is reversed, and other nodes are further
explored.

• After exploring from the perspective of the primary in-
puts, nodes are explored considering a primary output bit
constant. All nodes affecting such output are considered,
and a one by one pruning is also performed with accuracy
evaluations after every step. Similar to before, if the
output error goes beyond the given threshold, the last
pruning step is reversed, and other nodes affecting such
output are explored.

AxLS Framework
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AxLS – Evaluation

AxLS implemented using Python language.

External tools:
Yosys for circuit synthesis.
Icarus Verilog for netlist simulation.

Arithmetic circuits, particularly standard adders.

NanGate 15 nm technology library.
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AxLS – Evaluation

Example of pruning technique, as Approximation Criteria:

Primary input constant.
All dependencies explored.

Primary output constant.
Explore nodes affecting such output.

Nodes removed, replaced with 0 value.
Starting from LSB.
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AxLS – 4-bit RCA
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to the first 8 LSB of the inputs and then to the 8 LSB of
the output.

Figure 4 depicts a simple example of a 4-bit ripple-carry
adder. The approximate netlist (Figure 4b) has been generated
following the previous steps described and for a worst-case
error (WCE) of 8 as an accuracy threshold. WCE represents
the maximum error tolerable for an approximate design, de-
spite its probability of occurrence. As it can be noticed from
the error distribution in Figure 4c, the higher error produced
is 6, with a very low probability. From this error distribution,
other error metrics can be calculated, such as the mean error
distance (MED), which is 2.2 for this case.

As can be observed, the resulting netlist depends solely on
the two most significant bits of the inputs and the carry-in
signal. Just two of the output bits are calculated, while the
others (not depicted in the diagram) are defined as 0. For
nodes that had a dependency on pruned gates, for instance,
_036_, the remaining wires _00_ and _01_ will drive a 0
value, as previously described for the netlist transformation
steps followed as an example with AxLS.

Figure 5 presents the results for the approximate netlist
generated for three 16-bit standard adders: Brent-Kung adder
(BKA), Kogge-Stone adder (KSA), and carry-lookahead adder
(CLA). These results correspond to circuit area reduction for
different target WCE and MED. In general, as it can be ob-
served, for a higher tolerable error, more savings are achieved.
However, using the described steps, for some accuracy targets,
the same area savings are obtained. This is the case for BKA
and CLA for the WCE error metric, for which no further netlist
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_036_, the remaining wires _00_ and _01_ will drive a 0
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steps followed as an example with AxLS.
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different target WCE and MED. In general, as it can be ob-
served, for a higher tolerable error, more savings are achieved.
However, using the described steps, for some accuracy targets,
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AxLS – Evaluation
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other error metrics can be calculated, such as the mean error
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As can be observed, the resulting netlist depends solely on
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signal. Just two of the output bits are calculated, while the
others (not depicted in the diagram) are defined as 0. For
nodes that had a dependency on pruned gates, for instance,
_036_, the remaining wires _00_ and _01_ will drive a 0
value, as previously described for the netlist transformation
steps followed as an example with AxLS.

Figure 5 presents the results for the approximate netlist
generated for three 16-bit standard adders: Brent-Kung adder
(BKA), Kogge-Stone adder (KSA), and carry-lookahead adder
(CLA). These results correspond to circuit area reduction for
different target WCE and MED. In general, as it can be ob-
served, for a higher tolerable error, more savings are achieved.
However, using the described steps, for some accuracy targets,
the same area savings are obtained. This is the case for BKA
and CLA for the WCE error metric, for which no further netlist
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Summary

AxLS is an open-source framework for ALS techniques 
based on netlist transformation.

Available at https://github.com/ECASLab/AxLS

Example of pruning techniques that can be applied, for 
different accuracy metrics, and tested with standard 
adders.

As future work, ML-based 
techniques for error estimation 
of gate pruning.
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The End

Thanks for your watching!
Schloss Karlsruhe (Karlsruhe Palace)


