
CES – Chair for Embedded Systems

ces.itec.kit.edu

AxLS: An Open-Source Framework for Netlist Transformation
Approximate Logic Synthesis
Jorge Castro-Godínez1,2, Humberto Barrantes-García2, Muhammad Shafique3, Jörg
Henkel1
1Karlsruhe Institute of Technology, 2Instituto Tecnológico de Costa Rica, 3New York University Abu
Dhabi

ces.itec.kit.edu2J. Castro-Godínez @ WOSET ‘20, Virtual Workshop

Approximate Computing

Computational quality (accuracy of results) vs.
computational effort (execution time, area, power, or
energy).

PDP = 0.69 / PSNR = 29.8 dBPDP = 1.00 / PSNR = inf dB

PDP = 0.62 / PSNR = 22.4 dB PDP = 0.61 / PSNR = 19.52 dB

Input image

ces.itec.kit.edu3J. Castro-Godínez @ WOSET ‘20, Virtual Workshop

Motivation

Approximate Logic Synthesis (ALS)
Generate approximate circuits from accurate
implementations.

Functional simplification:
Netlist transformation.
Boolean re-writing.
Approximate High-Level Synthesis.

Missing an open-source framework for
netlist transformation-based.

ces.itec.kit.edu4J. Castro-Godínez @ WOSET ‘20, Virtual Workshop

Cell
Extractionlib

Technology
Library

.xml

Cell
Description

Synthesis.v

RTL

.v

Netlist
v2xml .xml

Netlist
Approx.
Criteria

Accuracy
Threshold

.xml

Netlist
Transformed

Simulation saif

xml2v .v

Approximate
Netlist

Simulation

SynthesisCircuit
Metrics

Fig. 1. An overview of our automated AxLS framework. An XML representation of the synthesized netlist is created to manipulate it according to the
approximation criteria defined within AxLS. AxLS uses external tools for synthesis and simulation of the accurate and approximate versions of the netlist.

<?xml version="1.0" encoding="UTF-8"?>
<root>

<node name="INV_X2" var="u19">
<input name="A1" wire="n14" />
<output name="ZN" wire="n16" />

</node>
<node name="OAI21_X1" var="u23">
<input name="A1" wire="n14" />
<input name="A2" wire="n20" />
<output name="ZN" wire="n21" />

</node>
<node name="NAND2_X2" var="u33">
<input name="A1" wire="n16" />
<input name="A2" wire="n14" />
<output name="ZN" wire="S[1]" />

</node>
[...]

<circuitinputs>
<input var="in[0]"/>
<input var="in[1]"/>

</circuitinputs>
<circuitoutputs>
<output var="S[0]"/>
<output var="S[1]"/>

</circuitoutputs>
</root>

Fig. 2. XML code for a netlist description example.

The approximate netlist can be simulated to produce ap-
proximate outputs. AxLS provides functionality to compare
the approximate results against accurate ones to obtain an
error distribution in the form of a probability mass function,
commonly use for accuracy estimations [14], and to generate
values for different error metrics from it (for instance, those
described in [13]). Although not depicted in Figure 1, the
corresponding testbench is required for any simulation, which
generates an output file with the approximate results. For this,
representative test vectors are required for the input bit-width
of the circuit to be approximated.

Once an approximate netlist is generated with satisfactory
accuracy, the synthesis tool can be used to produce circuit
metrics such as area, delay, and power consumption.

III. EVALUATION

The current state of AxLS has been implemented using
Python language. As depicted, AxLS relies on external tools

4 Automatic Hardware Generation Tool 23

• input/output. Those tags are used to represent a connection between a logic gate

and an internal circuit wire. It contains the following attributes.

– name: Name of the input/output of the circuit. Obtained from the Technology

Library used to synthesize the circuit.

– wire: Name of the cable to which the wire is connected in a given input/output.

– delete** : If true, the logic needed exclusively to produce this wire signal could

be deprecated.

Using this format, the circuit is represented as a list of nodes in XML, each node

represents a logic gate with their inter-connections to other gates. An example of

the XML file is shown in Figure 4.2.

<?[PO�YHUVLRQ="1.0"�HQFRGLQJ="UTF-8"?>

<rooW>
���<node�QDPH="INV_X2"�YDU="X19">
������<inpXW�QDPH="A1"�ZLUH="Q14"�/>
������<oXWpXW�QDPH="ZN"�ZLUH="Q16"�/>
���</node>
���<node�QDPH="OAI21_X1"�YDU="X23">
������<inpXW�QDPH="A1"�ZLUH="Q14"�/>
������<inpXW�QDPH="A2"�ZLUH="Q20"�/>
������<oXWpXW�QDPH="ZN"�ZLUH="Q21"�/>
���</node>
���<node�QDPH="NAND2_X2"�YDU="X33">
������<inpXW�QDPH="A1"�ZLUH="Q16"�/>
������<inpXW�QDPH="A2"�ZLUH="Q14"�/>
������<oXWpXW�QDPH="ZN"�ZLUH="S[1]"�/>
���</node>
���[�...�]

���<circXiWinpXWV>
������<inpXW�YDU="LQ[0]"/>
������<inpXW�YDU="LQ[1]"/>
���</circXiWinpXWV>
���<circXiWoXWpXWV>
������<oXWpXW�YDU="S[0]"/>
������<oXWpXW�YDU="S[1]"/>
���</circXiWoXWpXWV>
</rooW>

Q16

X19

Q21

X23

Q24

X24

X32

Q14 Q14

Q14

LQ>1@

Q20 Q20

LQ>0@

S>0@

X33

S>1@

Figure 4.2: Sample of the circuit represented as an XML file.

Some of the benefits of this representation is that these files could be saved and

loaded quickly. The Python Element Tree library allows searches inside the structure

as if it were a database using XPath syntax. XPath syntax could search XML tags

filtering them by their attribute values or navigate through the circuit. For example,

with the following line:

root.findall("./node/input[@wire=’n54’]/..")

The algorithm gets every node which has an input connected to wire n54. Once

the circuit is represented in XML, two techniques were implemented to reduce the

Fig. 3. DAG representing an XML netlist example.

for synthesis and simulation. Currently, AxLS uses the Yosys
tool [15] for circuit synthesis and circuit area estimation, and
Icarus Verilog [16] for netlist simulation. The results here
presented were obtained using the NanGate 15nm technology
library.

We present an evaluation of AxLS for arithmetic circuits,
particularly standard adders. As approximate criteria, the fol-
lowing steps have been applied:

• Considering a primary input bit constant, all affected
nodes (gates) are explored. A node is considered constant
if all its inputs are constant, and then all dependencies of
such node are explored. Each of the considered nodes
is pruned, one by one, and accuracy is checked at each
step. If the output error goes beyond the given threshold,
the last pruning is reversed, and other nodes are further
explored.

• After exploring from the perspective of the primary in-
puts, nodes are explored considering a primary output bit
constant. All nodes affecting such output are considered,
and a one by one pruning is also performed with accuracy
evaluations after every step. Similar to before, if the
output error goes beyond the given threshold, the last
pruning step is reversed, and other nodes affecting such
output are explored.

AxLS – Netlist Generation

ces.itec.kit.edu5J. Castro-Godínez @ WOSET ‘20, Virtual Workshop

AxLS – XML-based Netlist

Cell
Extractionlib

Technology
Library

.xml

Cell
Description

Synthesis.v

RTL

.v

Netlist
v2xml .xml

Netlist
Approx.
Criteria

Accuracy
Threshold

.xml

Netlist
Transformed

Simulation saif

xml2v .v

Approximate
Netlist

Simulation

SynthesisCircuit
Metrics

Fig. 1. An overview of our automated AxLS framework. An XML representation of the synthesized netlist is created to manipulate it according to the
approximation criteria defined within AxLS. AxLS uses external tools for synthesis and simulation of the accurate and approximate versions of the netlist.

<?xml version="1.0" encoding="UTF-8"?>
<root>

<node name="INV_X2" var="u19">
<input name="A1" wire="n14" />
<output name="ZN" wire="n16" />

</node>
<node name="OAI21_X1" var="u23">
<input name="A1" wire="n14" />
<input name="A2" wire="n20" />
<output name="ZN" wire="n21" />

</node>
<node name="NAND2_X2" var="u33">
<input name="A1" wire="n16" />
<input name="A2" wire="n14" />
<output name="ZN" wire="S[1]" />

</node>
[...]

<circuitinputs>
<input var="in[0]"/>
<input var="in[1]"/>

</circuitinputs>
<circuitoutputs>
<output var="S[0]"/>
<output var="S[1]"/>

</circuitoutputs>
</root>

Fig. 2. XML code for a netlist description example.

The approximate netlist can be simulated to produce ap-
proximate outputs. AxLS provides functionality to compare
the approximate results against accurate ones to obtain an
error distribution in the form of a probability mass function,
commonly use for accuracy estimations [14], and to generate
values for different error metrics from it (for instance, those
described in [13]). Although not depicted in Figure 1, the
corresponding testbench is required for any simulation, which
generates an output file with the approximate results. For this,
representative test vectors are required for the input bit-width
of the circuit to be approximated.

Once an approximate netlist is generated with satisfactory
accuracy, the synthesis tool can be used to produce circuit
metrics such as area, delay, and power consumption.

III. EVALUATION

The current state of AxLS has been implemented using
Python language. As depicted, AxLS relies on external tools

4 Automatic Hardware Generation Tool 23

• input/output. Those tags are used to represent a connection between a logic gate

and an internal circuit wire. It contains the following attributes.

– name: Name of the input/output of the circuit. Obtained from the Technology

Library used to synthesize the circuit.

– wire: Name of the cable to which the wire is connected in a given input/output.

– delete** : If true, the logic needed exclusively to produce this wire signal could

be deprecated.

Using this format, the circuit is represented as a list of nodes in XML, each node

represents a logic gate with their inter-connections to other gates. An example of

the XML file is shown in Figure 4.2.

<?[PO�YHUVLRQ="1.0"�HQFRGLQJ="UTF-8"?>

<rooW>
���<node�QDPH="INV_X2"�YDU="X19">
������<inpXW�QDPH="A1"�ZLUH="Q14"�/>
������<oXWpXW�QDPH="ZN"�ZLUH="Q16"�/>
���</node>
���<node�QDPH="OAI21_X1"�YDU="X23">
������<inpXW�QDPH="A1"�ZLUH="Q14"�/>
������<inpXW�QDPH="A2"�ZLUH="Q20"�/>
������<oXWpXW�QDPH="ZN"�ZLUH="Q21"�/>
���</node>
���<node�QDPH="NAND2_X2"�YDU="X33">
������<inpXW�QDPH="A1"�ZLUH="Q16"�/>
������<inpXW�QDPH="A2"�ZLUH="Q14"�/>
������<oXWpXW�QDPH="ZN"�ZLUH="S[1]"�/>
���</node>
���[�...�]

���<circXiWinpXWV>
������<inpXW�YDU="LQ[0]"/>
������<inpXW�YDU="LQ[1]"/>
���</circXiWinpXWV>
���<circXiWoXWpXWV>
������<oXWpXW�YDU="S[0]"/>
������<oXWpXW�YDU="S[1]"/>
���</circXiWoXWpXWV>
</rooW>

Q16

X19

Q21

X23

Q24

X24

X32

Q14 Q14

Q14

LQ>1@

Q20 Q20

LQ>0@

S>0@

X33

S>1@

Figure 4.2: Sample of the circuit represented as an XML file.

Some of the benefits of this representation is that these files could be saved and

loaded quickly. The Python Element Tree library allows searches inside the structure

as if it were a database using XPath syntax. XPath syntax could search XML tags

filtering them by their attribute values or navigate through the circuit. For example,

with the following line:

root.findall("./node/input[@wire=’n54’]/..")

The algorithm gets every node which has an input connected to wire n54. Once

the circuit is represented in XML, two techniques were implemented to reduce the

Fig. 3. DAG representing an XML netlist example.

for synthesis and simulation. Currently, AxLS uses the Yosys
tool [15] for circuit synthesis and circuit area estimation, and
Icarus Verilog [16] for netlist simulation. The results here
presented were obtained using the NanGate 15nm technology
library.

We present an evaluation of AxLS for arithmetic circuits,
particularly standard adders. As approximate criteria, the fol-
lowing steps have been applied:

• Considering a primary input bit constant, all affected
nodes (gates) are explored. A node is considered constant
if all its inputs are constant, and then all dependencies of
such node are explored. Each of the considered nodes
is pruned, one by one, and accuracy is checked at each
step. If the output error goes beyond the given threshold,
the last pruning is reversed, and other nodes are further
explored.

• After exploring from the perspective of the primary in-
puts, nodes are explored considering a primary output bit
constant. All nodes affecting such output are considered,
and a one by one pruning is also performed with accuracy
evaluations after every step. Similar to before, if the
output error goes beyond the given threshold, the last
pruning step is reversed, and other nodes affecting such
output are explored.

Cell
Extractionlib

Technology
Library

.xml

Cell
Description

Synthesis.v

RTL

.v

Netlist
v2xml .xml

Netlist
Approx.
Criteria

Accuracy
Threshold

.xml

Netlist
Transformed

Simulation saif

xml2v .v

Approximate
Netlist

Simulation

SynthesisCircuit
Metrics

Fig. 1. An overview of our automated AxLS framework. An XML representation of the synthesized netlist is created to manipulate it according to the
approximation criteria defined within AxLS. AxLS uses external tools for synthesis and simulation of the accurate and approximate versions of the netlist.

<?xml version="1.0" encoding="UTF-8"?>
<root>

<node name="INV_X2" var="u19">
<input name="A1" wire="n14" />
<output name="ZN" wire="n16" />

</node>
<node name="OAI21_X1" var="u23">
<input name="A1" wire="n14" />
<input name="A2" wire="n20" />
<output name="ZN" wire="n21" />

</node>
<node name="NAND2_X2" var="u33">
<input name="A1" wire="n16" />
<input name="A2" wire="n14" />
<output name="ZN" wire="S[1]" />

</node>
[...]

<circuitinputs>
<input var="in[0]"/>
<input var="in[1]"/>

</circuitinputs>
<circuitoutputs>
<output var="S[0]"/>
<output var="S[1]"/>

</circuitoutputs>
</root>

Fig. 2. XML code for a netlist description example.

The approximate netlist can be simulated to produce ap-
proximate outputs. AxLS provides functionality to compare
the approximate results against accurate ones to obtain an
error distribution in the form of a probability mass function,
commonly use for accuracy estimations [14], and to generate
values for different error metrics from it (for instance, those
described in [13]). Although not depicted in Figure 1, the
corresponding testbench is required for any simulation, which
generates an output file with the approximate results. For this,
representative test vectors are required for the input bit-width
of the circuit to be approximated.

Once an approximate netlist is generated with satisfactory
accuracy, the synthesis tool can be used to produce circuit
metrics such as area, delay, and power consumption.

III. EVALUATION

The current state of AxLS has been implemented using
Python language. As depicted, AxLS relies on external tools

4 Automatic Hardware Generation Tool 23

• input/output. Those tags are used to represent a connection between a logic gate

and an internal circuit wire. It contains the following attributes.

– name: Name of the input/output of the circuit. Obtained from the Technology

Library used to synthesize the circuit.

– wire: Name of the cable to which the wire is connected in a given input/output.

– delete** : If true, the logic needed exclusively to produce this wire signal could

be deprecated.

Using this format, the circuit is represented as a list of nodes in XML, each node

represents a logic gate with their inter-connections to other gates. An example of

the XML file is shown in Figure 4.2.

<?[PO�YHUVLRQ="1.0"�HQFRGLQJ="UTF-8"?>

<rooW>
���<node�QDPH="INV_X2"�YDU="X19">
������<inpXW�QDPH="A1"�ZLUH="Q14"�/>
������<oXWpXW�QDPH="ZN"�ZLUH="Q16"�/>
���</node>
���<node�QDPH="OAI21_X1"�YDU="X23">
������<inpXW�QDPH="A1"�ZLUH="Q14"�/>
������<inpXW�QDPH="A2"�ZLUH="Q20"�/>
������<oXWpXW�QDPH="ZN"�ZLUH="Q21"�/>
���</node>
���<node�QDPH="NAND2_X2"�YDU="X33">
������<inpXW�QDPH="A1"�ZLUH="Q16"�/>
������<inpXW�QDPH="A2"�ZLUH="Q14"�/>
������<oXWpXW�QDPH="ZN"�ZLUH="S[1]"�/>
���</node>
���[�...�]

���<circXiWinpXWV>
������<inpXW�YDU="LQ[0]"/>
������<inpXW�YDU="LQ[1]"/>
���</circXiWinpXWV>
���<circXiWoXWpXWV>
������<oXWpXW�YDU="S[0]"/>
������<oXWpXW�YDU="S[1]"/>
���</circXiWoXWpXWV>
</rooW>

Q16

X19

Q21

X23

Q24

X24

X32

Q14 Q14

Q14

LQ>1@

Q20 Q20

LQ>0@

S>0@

X33

S>1@

Figure 4.2: Sample of the circuit represented as an XML file.

Some of the benefits of this representation is that these files could be saved and

loaded quickly. The Python Element Tree library allows searches inside the structure

as if it were a database using XPath syntax. XPath syntax could search XML tags

filtering them by their attribute values or navigate through the circuit. For example,

with the following line:

root.findall("./node/input[@wire=’n54’]/..")

The algorithm gets every node which has an input connected to wire n54. Once

the circuit is represented in XML, two techniques were implemented to reduce the

Fig. 3. DAG representing an XML netlist example.

for synthesis and simulation. Currently, AxLS uses the Yosys
tool [15] for circuit synthesis and circuit area estimation, and
Icarus Verilog [16] for netlist simulation. The results here
presented were obtained using the NanGate 15nm technology
library.

We present an evaluation of AxLS for arithmetic circuits,
particularly standard adders. As approximate criteria, the fol-
lowing steps have been applied:

• Considering a primary input bit constant, all affected
nodes (gates) are explored. A node is considered constant
if all its inputs are constant, and then all dependencies of
such node are explored. Each of the considered nodes
is pruned, one by one, and accuracy is checked at each
step. If the output error goes beyond the given threshold,
the last pruning is reversed, and other nodes are further
explored.

• After exploring from the perspective of the primary in-
puts, nodes are explored considering a primary output bit
constant. All nodes affecting such output are considered,
and a one by one pruning is also performed with accuracy
evaluations after every step. Similar to before, if the
output error goes beyond the given threshold, the last
pruning step is reversed, and other nodes affecting such
output are explored.

XML Netlist Description

DAG of Netlist Description

ces.itec.kit.edu6J. Castro-Godínez @ WOSET ‘20, Virtual Workshop

Cell
Extractionlib

Technology
Library

.xml

Cell
Description

Synthesis.v

RTL

.v

Netlist
v2xml .xml

Netlist
Approx.
Criteria

Accuracy
Threshold

.xml

Netlist
Transformed

Simulation saif

xml2v .v

Approximate
Netlist

Simulation

SynthesisCircuit
Metrics

Fig. 1. An overview of our automated AxLS framework. An XML representation of the synthesized netlist is created to manipulate it according to the
approximation criteria defined within AxLS. AxLS uses external tools for synthesis and simulation of the accurate and approximate versions of the netlist.

<?xml version="1.0" encoding="UTF-8"?>
<root>

<node name="INV_X2" var="u19">
<input name="A1" wire="n14" />
<output name="ZN" wire="n16" />

</node>
<node name="OAI21_X1" var="u23">
<input name="A1" wire="n14" />
<input name="A2" wire="n20" />
<output name="ZN" wire="n21" />

</node>
<node name="NAND2_X2" var="u33">
<input name="A1" wire="n16" />
<input name="A2" wire="n14" />
<output name="ZN" wire="S[1]" />

</node>
[...]

<circuitinputs>
<input var="in[0]"/>
<input var="in[1]"/>

</circuitinputs>
<circuitoutputs>
<output var="S[0]"/>
<output var="S[1]"/>

</circuitoutputs>
</root>

Fig. 2. XML code for a netlist description example.

The approximate netlist can be simulated to produce ap-
proximate outputs. AxLS provides functionality to compare
the approximate results against accurate ones to obtain an
error distribution in the form of a probability mass function,
commonly use for accuracy estimations [14], and to generate
values for different error metrics from it (for instance, those
described in [13]). Although not depicted in Figure 1, the
corresponding testbench is required for any simulation, which
generates an output file with the approximate results. For this,
representative test vectors are required for the input bit-width
of the circuit to be approximated.

Once an approximate netlist is generated with satisfactory
accuracy, the synthesis tool can be used to produce circuit
metrics such as area, delay, and power consumption.

III. EVALUATION

The current state of AxLS has been implemented using
Python language. As depicted, AxLS relies on external tools

4 Automatic Hardware Generation Tool 23

• input/output. Those tags are used to represent a connection between a logic gate

and an internal circuit wire. It contains the following attributes.

– name: Name of the input/output of the circuit. Obtained from the Technology

Library used to synthesize the circuit.

– wire: Name of the cable to which the wire is connected in a given input/output.

– delete** : If true, the logic needed exclusively to produce this wire signal could

be deprecated.

Using this format, the circuit is represented as a list of nodes in XML, each node

represents a logic gate with their inter-connections to other gates. An example of

the XML file is shown in Figure 4.2.

<?[PO�YHUVLRQ="1.0"�HQFRGLQJ="UTF-8"?>

<rooW>
���<node�QDPH="INV_X2"�YDU="X19">
������<inpXW�QDPH="A1"�ZLUH="Q14"�/>
������<oXWpXW�QDPH="ZN"�ZLUH="Q16"�/>
���</node>
���<node�QDPH="OAI21_X1"�YDU="X23">
������<inpXW�QDPH="A1"�ZLUH="Q14"�/>
������<inpXW�QDPH="A2"�ZLUH="Q20"�/>
������<oXWpXW�QDPH="ZN"�ZLUH="Q21"�/>
���</node>
���<node�QDPH="NAND2_X2"�YDU="X33">
������<inpXW�QDPH="A1"�ZLUH="Q16"�/>
������<inpXW�QDPH="A2"�ZLUH="Q14"�/>
������<oXWpXW�QDPH="ZN"�ZLUH="S[1]"�/>
���</node>
���[�...�]

���<circXiWinpXWV>
������<inpXW�YDU="LQ[0]"/>
������<inpXW�YDU="LQ[1]"/>
���</circXiWinpXWV>
���<circXiWoXWpXWV>
������<oXWpXW�YDU="S[0]"/>
������<oXWpXW�YDU="S[1]"/>
���</circXiWoXWpXWV>
</rooW>

Q16

X19

Q21

X23

Q24

X24

X32

Q14 Q14

Q14

LQ>1@

Q20 Q20

LQ>0@

S>0@

X33

S>1@

Figure 4.2: Sample of the circuit represented as an XML file.

Some of the benefits of this representation is that these files could be saved and

loaded quickly. The Python Element Tree library allows searches inside the structure

as if it were a database using XPath syntax. XPath syntax could search XML tags

filtering them by their attribute values or navigate through the circuit. For example,

with the following line:

root.findall("./node/input[@wire=’n54’]/..")

The algorithm gets every node which has an input connected to wire n54. Once

the circuit is represented in XML, two techniques were implemented to reduce the

Fig. 3. DAG representing an XML netlist example.

for synthesis and simulation. Currently, AxLS uses the Yosys
tool [15] for circuit synthesis and circuit area estimation, and
Icarus Verilog [16] for netlist simulation. The results here
presented were obtained using the NanGate 15nm technology
library.

We present an evaluation of AxLS for arithmetic circuits,
particularly standard adders. As approximate criteria, the fol-
lowing steps have been applied:

• Considering a primary input bit constant, all affected
nodes (gates) are explored. A node is considered constant
if all its inputs are constant, and then all dependencies of
such node are explored. Each of the considered nodes
is pruned, one by one, and accuracy is checked at each
step. If the output error goes beyond the given threshold,
the last pruning is reversed, and other nodes are further
explored.

• After exploring from the perspective of the primary in-
puts, nodes are explored considering a primary output bit
constant. All nodes affecting such output are considered,
and a one by one pruning is also performed with accuracy
evaluations after every step. Similar to before, if the
output error goes beyond the given threshold, the last
pruning step is reversed, and other nodes affecting such
output are explored.

AxLS Framework

ces.itec.kit.edu7J. Castro-Godínez @ WOSET ‘20, Virtual Workshop

AxLS – Evaluation

AxLS implemented using Python language.

External tools:
Yosys for circuit synthesis.
Icarus Verilog for netlist simulation.

Arithmetic circuits, particularly standard adders.

NanGate 15 nm technology library.

ces.itec.kit.edu8J. Castro-Godínez @ WOSET ‘20, Virtual Workshop

AxLS – Evaluation

Example of pruning technique, as Approximation Criteria:

Primary input constant.
All dependencies explored.

Primary output constant.
Explore nodes affecting such output.

Nodes removed, replaced with 0 value.
Starting from LSB.

ces.itec.kit.edu9J. Castro-Godínez @ WOSET ‘20, Virtual Workshop

AxLS – 4-bit RCA

cin

36

35

in1_0

_31__32_ _33_in1_1

17 _37_ _38_in1_2

_20__21_ _22_ in1_3

25 _27__28_

in2_0

in2_1

in2_2

in2_3

out_0out_1

out_2 out_3 out_4

18

07

19

24

_08__26_

08

29

14

30

14

09

23

10

12

_11__11_

13 _15__16_

34

_00__00_

_03__04_ _04_

01 _02_

05 _06_

(a) Accurate netlist.

cin

36

in1_0 in1_1

in1_2

_22_in1_3

_25__27_ _28_

in2_0 in2_1

in2_2

in2_3

out_0 out_1 out_2

out_3out_4

19

26

08

29

14

30

14

06 _05_

11

13

09

15 _16_

04

00 _01_

(b) Approximate netlist for WCE = 8.

0 1 2 3 4 5 6
0

0.10

0.20

0.30

ED

p(
ED

)

(c) Error distribution for the approximate
netlist generated for WCE = 8.

Fig. 4. Direct acyclic graph representation of an accurate and approximate
4-bit ripple-carry adder. The approximate version has been modified with a
WCE constraint of 8.

• For those nodes and outputs removed, a 0 value is
assigned. For instance, nodes depending on others pruned
will receive a 0 as input instead of the expected result
previously provided by the now missing node.

• For the scope of this evaluation, these steps are repeated
for the half less significant bits (LSB). So, for instance,

0 20 40 60 80 100

0.7

0.8

0.9

1

WCE

N
or

m
al

iz
ed

A
re

a

BKA KSA CLA

0 20 40 60 80 100

0.6

0.8

1

MED

N
or

m
al

iz
ed

A
re

a

Fig. 5. Evaluation using AxLS for three 16-bit adders, BKA, KSA and, CLA,
and two error metrics, WCE and MED.

for a 16-bit adder, these approximation criteria are applied
to the first 8 LSB of the inputs and then to the 8 LSB of
the output.

Figure 4 depicts a simple example of a 4-bit ripple-carry
adder. The approximate netlist (Figure 4b) has been generated
following the previous steps described and for a worst-case
error (WCE) of 8 as an accuracy threshold. WCE represents
the maximum error tolerable for an approximate design, de-
spite its probability of occurrence. As it can be noticed from
the error distribution in Figure 4c, the higher error produced
is 6, with a very low probability. From this error distribution,
other error metrics can be calculated, such as the mean error
distance (MED), which is 2.2 for this case.

As can be observed, the resulting netlist depends solely on
the two most significant bits of the inputs and the carry-in
signal. Just two of the output bits are calculated, while the
others (not depicted in the diagram) are defined as 0. For
nodes that had a dependency on pruned gates, for instance,
036, the remaining wires _00_ and _01_ will drive a 0
value, as previously described for the netlist transformation
steps followed as an example with AxLS.

Figure 5 presents the results for the approximate netlist
generated for three 16-bit standard adders: Brent-Kung adder
(BKA), Kogge-Stone adder (KSA), and carry-lookahead adder
(CLA). These results correspond to circuit area reduction for
different target WCE and MED. In general, as it can be ob-
served, for a higher tolerable error, more savings are achieved.
However, using the described steps, for some accuracy targets,
the same area savings are obtained. This is the case for BKA
and CLA for the WCE error metric, for which no further netlist

(a) Accurate netlist.

cin

36

in1_0 in1_1

in1_2

_22_in1_3

_25__27_ _28_

in2_0 in2_1

in2_2

in2_3

out_0 out_1 out_2

out_3out_4

19

26

08

29

14

30

14

06 _05_

11

13

09

15 _16_

04

00 _01_

(b) Approximate netlist for WCE = 8.

0 1 2 3 4 5 6
0

0.10

0.20

0.30

ED

p(
ED

)

(c) Error distribution for the approximate
netlist generated for WCE = 8.

Fig. 4. Direct acyclic graph representation of an accurate and approximate
4-bit ripple-carry adder. The approximate version has been modified with a
WCE constraint of 8.

• For those nodes and outputs removed, a 0 value is
assigned. For instance, nodes depending on others pruned
will receive a 0 as input instead of the expected result
previously provided by the now missing node.

• For the scope of this evaluation, these steps are repeated
for the half less significant bits (LSB). So, for instance,

0 20 40 60 80 100

0.7

0.8

0.9

1

WCE

N
or

m
al

iz
ed

A
re

a

BKA KSA CLA

0 20 40 60 80 100

0.6

0.8

1

MED

N
or

m
al

iz
ed

A
re

a

Fig. 5. Evaluation using AxLS for three 16-bit adders, BKA, KSA and, CLA,
and two error metrics, WCE and MED.

for a 16-bit adder, these approximation criteria are applied
to the first 8 LSB of the inputs and then to the 8 LSB of
the output.

Figure 4 depicts a simple example of a 4-bit ripple-carry
adder. The approximate netlist (Figure 4b) has been generated
following the previous steps described and for a worst-case
error (WCE) of 8 as an accuracy threshold. WCE represents
the maximum error tolerable for an approximate design, de-
spite its probability of occurrence. As it can be noticed from
the error distribution in Figure 4c, the higher error produced
is 6, with a very low probability. From this error distribution,
other error metrics can be calculated, such as the mean error
distance (MED), which is 2.2 for this case.

As can be observed, the resulting netlist depends solely on
the two most significant bits of the inputs and the carry-in
signal. Just two of the output bits are calculated, while the
others (not depicted in the diagram) are defined as 0. For
nodes that had a dependency on pruned gates, for instance,
036, the remaining wires _00_ and _01_ will drive a 0
value, as previously described for the netlist transformation
steps followed as an example with AxLS.

Figure 5 presents the results for the approximate netlist
generated for three 16-bit standard adders: Brent-Kung adder
(BKA), Kogge-Stone adder (KSA), and carry-lookahead adder
(CLA). These results correspond to circuit area reduction for
different target WCE and MED. In general, as it can be ob-
served, for a higher tolerable error, more savings are achieved.
However, using the described steps, for some accuracy targets,
the same area savings are obtained. This is the case for BKA
and CLA for the WCE error metric, for which no further netlist

Accurate Netlist

Approximate Netlist

(a) Accurate netlist.

cin

36

in1_0 in1_1

in1_2

_22_in1_3

_25__27_ _28_

in2_0 in2_1

in2_2

in2_3

out_0 out_1 out_2

out_3out_4

19

26

08

29

14

30

14

06 _05_

11

13

09

15 _16_

04

00 _01_

(b) Approximate netlist for WCE = 8.

0 1 2 3 4 5 6
0

0.10

0.20

0.30

ED

p(
ED

)

(c) Error distribution for the approximate
netlist generated for WCE = 8.

Fig. 4. Direct acyclic graph representation of an accurate and approximate
4-bit ripple-carry adder. The approximate version has been modified with a
WCE constraint of 8.

• For those nodes and outputs removed, a 0 value is
assigned. For instance, nodes depending on others pruned
will receive a 0 as input instead of the expected result
previously provided by the now missing node.

• For the scope of this evaluation, these steps are repeated
for the half less significant bits (LSB). So, for instance,

0 20 40 60 80 100

0.7

0.8

0.9

1

WCE

N
or

m
al

iz
ed

A
re

a

BKA KSA CLA

0 20 40 60 80 100

0.6

0.8

1

MED

N
or

m
al

iz
ed

A
re

a

Fig. 5. Evaluation using AxLS for three 16-bit adders, BKA, KSA and, CLA,
and two error metrics, WCE and MED.

for a 16-bit adder, these approximation criteria are applied
to the first 8 LSB of the inputs and then to the 8 LSB of
the output.

Figure 4 depicts a simple example of a 4-bit ripple-carry
adder. The approximate netlist (Figure 4b) has been generated
following the previous steps described and for a worst-case
error (WCE) of 8 as an accuracy threshold. WCE represents
the maximum error tolerable for an approximate design, de-
spite its probability of occurrence. As it can be noticed from
the error distribution in Figure 4c, the higher error produced
is 6, with a very low probability. From this error distribution,
other error metrics can be calculated, such as the mean error
distance (MED), which is 2.2 for this case.

As can be observed, the resulting netlist depends solely on
the two most significant bits of the inputs and the carry-in
signal. Just two of the output bits are calculated, while the
others (not depicted in the diagram) are defined as 0. For
nodes that had a dependency on pruned gates, for instance,
036, the remaining wires _00_ and _01_ will drive a 0
value, as previously described for the netlist transformation
steps followed as an example with AxLS.

Figure 5 presents the results for the approximate netlist
generated for three 16-bit standard adders: Brent-Kung adder
(BKA), Kogge-Stone adder (KSA), and carry-lookahead adder
(CLA). These results correspond to circuit area reduction for
different target WCE and MED. In general, as it can be ob-
served, for a higher tolerable error, more savings are achieved.
However, using the described steps, for some accuracy targets,
the same area savings are obtained. This is the case for BKA
and CLA for the WCE error metric, for which no further netlist

ces.itec.kit.edu10J. Castro-Godínez @ WOSET ‘20, Virtual Workshop

AxLS – Evaluation

(a) Accurate netlist.

cin

36

in1_0 in1_1

in1_2

_22_in1_3

_25__27_ _28_

in2_0 in2_1

in2_2

in2_3

out_0 out_1 out_2

out_3out_4

19

26

08

29

14

30

14

06 _05_

11

13

09

15 _16_

04

00 _01_

(b) Approximate netlist for WCE = 8.

0 1 2 3 4 5 6
0

0.10

0.20

0.30

ED

p(
ED

)

(c) Error distribution for the approximate
netlist generated for WCE = 8.

Fig. 4. Direct acyclic graph representation of an accurate and approximate
4-bit ripple-carry adder. The approximate version has been modified with a
WCE constraint of 8.

• For those nodes and outputs removed, a 0 value is
assigned. For instance, nodes depending on others pruned
will receive a 0 as input instead of the expected result
previously provided by the now missing node.

• For the scope of this evaluation, these steps are repeated
for the half less significant bits (LSB). So, for instance,

0 20 40 60 80 100

0.7

0.8

0.9

1

WCE

N
or

m
al

iz
ed

A
re

a

BKA KSA CLA

0 20 40 60 80 100

0.6

0.8

1

MED

N
or

m
al

iz
ed

A
re

a

Fig. 5. Evaluation using AxLS for three 16-bit adders, BKA, KSA and, CLA,
and two error metrics, WCE and MED.

for a 16-bit adder, these approximation criteria are applied
to the first 8 LSB of the inputs and then to the 8 LSB of
the output.

Figure 4 depicts a simple example of a 4-bit ripple-carry
adder. The approximate netlist (Figure 4b) has been generated
following the previous steps described and for a worst-case
error (WCE) of 8 as an accuracy threshold. WCE represents
the maximum error tolerable for an approximate design, de-
spite its probability of occurrence. As it can be noticed from
the error distribution in Figure 4c, the higher error produced
is 6, with a very low probability. From this error distribution,
other error metrics can be calculated, such as the mean error
distance (MED), which is 2.2 for this case.

As can be observed, the resulting netlist depends solely on
the two most significant bits of the inputs and the carry-in
signal. Just two of the output bits are calculated, while the
others (not depicted in the diagram) are defined as 0. For
nodes that had a dependency on pruned gates, for instance,
036, the remaining wires _00_ and _01_ will drive a 0
value, as previously described for the netlist transformation
steps followed as an example with AxLS.

Figure 5 presents the results for the approximate netlist
generated for three 16-bit standard adders: Brent-Kung adder
(BKA), Kogge-Stone adder (KSA), and carry-lookahead adder
(CLA). These results correspond to circuit area reduction for
different target WCE and MED. In general, as it can be ob-
served, for a higher tolerable error, more savings are achieved.
However, using the described steps, for some accuracy targets,
the same area savings are obtained. This is the case for BKA
and CLA for the WCE error metric, for which no further netlist

ces.itec.kit.edu11J. Castro-Godínez @ WOSET ‘20, Virtual Workshop

Summary

AxLS is an open-source framework for ALS techniques
based on netlist transformation.

Available at https://github.com/ECASLab/AxLS

Example of pruning techniques that can be applied, for
different accuracy metrics, and tested with standard
adders.

As future work, ML-based
techniques for error estimation
of gate pruning.

ces.itec.kit.edu12J. Castro-Godínez @ WOSET ‘20, Virtual Workshop

The End

Thanks for your watching!
Schloss Karlsruhe (Karlsruhe Palace)

