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Abstract—With the rise of Approximate Computing as an
energy-efficient design paradigm for error-tolerant applications,
different Approximate Logic Synthesis (ALS) approaches have
been proposed to generate approximate circuits from accurate
implementations automatically. In this paper, we present AxLS,
our open-source framework for ALS techniques based on struc-
tural netlist transformations. We describe our framework and
provide an experimental evaluation for arithmetic circuits with
our current implementation. AxLS enables the study and test
of existing ALS techniques based on netlist transformations and
the proposition of new ones. AxLS is available to download at
https://github.com/ECASLab/AxLS.

Index Terms—Approximate computing, logic synthesis, design
tools.

I. INTRODUCTION

The need to improve power and energy efficiency in com-
puting systems has motivated the emergence of new devices,
architectures, and design techniques. Approximate Computing
is one paradigm in which the required computational resources
of error-tolerant applications can be reduced in exchange for
some degradation in the accuracy of results [1]. Examples of
these error-tolerant applications include image and video pro-
cessing, computer vision, data mining, and machine learning
[2], [3].

With the rise of the approximate computing paradigm,
different Approximate Logic Synthesis (ALS) approaches have
been proposed to generate approximate circuits from accurate
implementations automatically. In the literature, three main
approaches to exploit functional simplification have been re-
ported [4]: netlist transformation [5], [6], Boolean rewriting
[7], [8], and approximate high-level synthesis [9], [10].

For the case of Boolean rewriting, open-source contributions
have been made [11]. However, to explore and implement
current ALS netlist transformation techniques reported in the
literature, develop methods for error modeling, and propose
new approaches, an open-source framework that enables it is
still missing.

Contribution: This paper presents AxLS, an open-source
framework for ALS techniques based on structural netlist
transformations. We describe our framework and provide an
experimental evaluation for arithmetic circuits with our current
implementation of AxLS. AxLS is available to the community
at https://github.com/ECASLab/AxLS.

II. AXLS FRAMEWORK

AxLS is a framework for ALS techniques based on the idea
of structural netlist transformations. Figure 1 depicts the main
components of our framework. As shown, AxLS requires the
Verilog RTL description of the circuit to be approximated.
A netlist is generated using a synthesis tool for a specific
standard cell technology library. From the same technology
library, particularly from the Verilog simulation models, a
description of the cells is created and put into an XML file. A
representation of the netlist is generated with a custom netlist
to XML function (v2xml) and the cell description. XML files
are easy to retrieve, manipulate, and save. Figure 2 presents a
code snippet of a toy netlist representation with XML, using
the NanGate 15nm technology library. Figure 3 shows a direct
acyclic graph (DAG) representation for this netlist example,
generated from the XML representation.

A post-synthesis simulation can be performed to obtain
gate-level switching activity values (saif file). This information
can be included in the XML netlist representation as part of
the gate’s properties, and it can be further used to guide the
netlist transformation criteria [12].

With an XML representation of the netlist, different approx-
imation criteria can be applied to transform the netlist. For
instance, gates can be pruned one by one considering their
impact on the output error and switching activity [5], genetic-
based algorithms can be used to mutate the netlist into approx-
imate versions by interchanging gates with wire connections
[13], or output pruning can be applied by removing all logic
gates that affect a specific primary output of the netlist.

Regardless of the netlist transformation technique followed,
an accuracy threshold is required for a defined error metric.
This accuracy target is used to assess if the approximations
applied creates an approximate netlist that still produces
acceptable results. According to the approximation criteria
that can be implemented within AxLS, a Verilog file with
the approximate netlist can be generated from the transformed
netlist described with XML. Using a custom XML to netlist
function (xml2v), this Verilog file can be generated every time
the approximate version’s accuracy is evaluated. The generated
netlist is based on the gates available in the cell library used
for the synthesis.
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Fig. 1. An overview of our automated AxLS framework. An XML representation of the synthesized netlist is created to manipulate it according to the
approximation criteria defined within AxLS. AxLS uses external tools for synthesis and simulation of the accurate and approximate versions of the netlist.

<?xml version="1.0" encoding="UTF-8"?>
<root>
<node name="INV_X2" var="u19">
<input name="A1" wire="n14" />
<output name="ZN" wire="n16" />

</node>
<node name="OAI21_X1" var="u23">
<input name="A1" wire="n14" />
<input name="A2" wire="n20" />
<output name="ZN" wire="n21" />

</node>
<node name="NAND2_X2" var="u33">
<input name="A1" wire="n16" />
<input name="A2" wire="n14" />
<output name="ZN" wire="S[1]" />

</node>
[ ... ]
<circuitinputs>
<input var="in[0]"/>
<input var="in[1]"/>

</circuitinputs>
<circuitoutputs>
<output var="S[0]"/>
<output var="S[1]"/>

</circuitoutputs>
</root>

Fig. 2. XML code for a netlist description example.

The approximate netlist can be simulated to produce ap-
proximate outputs. AxLS provides functionality to compare
the approximate results against accurate ones to obtain an
error distribution in the form of a probability mass function,
commonly use for accuracy estimations [14], and to generate
values for different error metrics from it (for instance, those
described in [13]). Although not depicted in Figure 1, the
corresponding testbench is required for any simulation, which
generates an output file with the approximate results. For this,
representative test vectors are required for the input bit-width
of the circuit to be approximated.

Once an approximate netlist is generated with satisfactory
accuracy, the synthesis tool can be used to produce circuit
metrics such as area, delay, and power consumption.

III. EVALUATION

The current state of AxLS has been implemented using
Python language. As depicted, AxLS relies on external tools
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• input/output. Those tags are used to represent a connection between a logic gate

and an internal circuit wire. It contains the following attributes.

– name: Name of the input/output of the circuit. Obtained from the Technology

Library used to synthesize the circuit.

– wire: Name of the cable to which the wire is connected in a given input/output.

– delete** : If true, the logic needed exclusively to produce this wire signal could

be deprecated.

Using this format, the circuit is represented as a list of nodes in XML, each node

represents a logic gate with their inter-connections to other gates. An example of

the XML file is shown in Figure 4.2.

<?[PO�YHUVLRQ="1.0"�HQFRGLQJ="UTF-8"?>
<rooW>
���<node�QDPH="INV_X2"�YDU="X19">
������<inpXW�QDPH="A1"�ZLUH="Q14"�/>
������<oXWpXW�QDPH="ZN"�ZLUH="Q16"�/>
���</node>
���<node�QDPH="OAI21_X1"�YDU="X23">
������<inpXW�QDPH="A1"�ZLUH="Q14"�/>
������<inpXW�QDPH="A2"�ZLUH="Q20"�/>
������<oXWpXW�QDPH="ZN"�ZLUH="Q21"�/>
���</node>
���<node�QDPH="NAND2_X2"�YDU="X33">
������<inpXW�QDPH="A1"�ZLUH="Q16"�/>
������<inpXW�QDPH="A2"�ZLUH="Q14"�/>
������<oXWpXW�QDPH="ZN"�ZLUH="S[1]"�/>
���</node>
���[�...�]
���<circXiWinpXWV>
������<inpXW�YDU="LQ[0]"/>
������<inpXW�YDU="LQ[1]"/>
���</circXiWinpXWV>
���<circXiWoXWpXWV>
������<oXWpXW�YDU="S[0]"/>
������<oXWpXW�YDU="S[1]"/>
���</circXiWoXWpXWV>
</rooW>
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Figure 4.2: Sample of the circuit represented as an XML file.

Some of the benefits of this representation is that these files could be saved and

loaded quickly. The Python Element Tree library allows searches inside the structure

as if it were a database using XPath syntax. XPath syntax could search XML tags

filtering them by their attribute values or navigate through the circuit. For example,

with the following line:

root.findall("./node/input[@wire=’n54’]/..")

The algorithm gets every node which has an input connected to wire n54. Once

the circuit is represented in XML, two techniques were implemented to reduce the

Fig. 3. DAG representing an XML netlist example.

for synthesis and simulation. Currently, AxLS uses the Yosys
tool [15] for circuit synthesis and circuit area estimation, and
Icarus Verilog [16] for netlist simulation. The results here
presented were obtained using the NanGate 15nm technology
library.

We present an evaluation of AxLS for arithmetic circuits,
particularly standard adders. As approximate criteria, the fol-
lowing steps have been applied:

• Considering a primary input bit constant, all affected
nodes (gates) are explored. A node is considered constant
if all its inputs are constant, and then all dependencies of
such node are explored. Each of the considered nodes
is pruned, one by one, and accuracy is checked at each
step. If the output error goes beyond the given threshold,
the last pruning is reversed, and other nodes are further
explored.

• After exploring from the perspective of the primary in-
puts, nodes are explored considering a primary output bit
constant. All nodes affecting such output are considered,
and a one by one pruning is also performed with accuracy
evaluations after every step. Similar to before, if the
output error goes beyond the given threshold, the last
pruning step is reversed, and other nodes affecting such
output are explored.
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netlist generated for WCE = 8.

Fig. 4. Direct acyclic graph representation of an accurate and approximate
4-bit ripple-carry adder. The approximate version has been modified with a
WCE constraint of 8.

• For those nodes and outputs removed, a 0 value is
assigned. For instance, nodes depending on others pruned
will receive a 0 as input instead of the expected result
previously provided by the now missing node.

• For the scope of this evaluation, these steps are repeated
for the half less significant bits (LSB). So, for instance,
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Fig. 5. Evaluation using AxLS for three 16-bit adders, BKA, KSA and, CLA,
and two error metrics, WCE and MED.

for a 16-bit adder, these approximation criteria are applied
to the first 8 LSB of the inputs and then to the 8 LSB of
the output.

Figure 4 depicts a simple example of a 4-bit ripple-carry
adder. The approximate netlist (Figure 4b) has been generated
following the previous steps described and for a worst-case
error (WCE) of 8 as an accuracy threshold. WCE represents
the maximum error tolerable for an approximate design, de-
spite its probability of occurrence. As it can be noticed from
the error distribution in Figure 4c, the higher error produced
is 6, with a very low probability. From this error distribution,
other error metrics can be calculated, such as the mean error
distance (MED), which is 2.2 for this case.

As can be observed, the resulting netlist depends solely on
the two most significant bits of the inputs and the carry-in
signal. Just two of the output bits are calculated, while the
others (not depicted in the diagram) are defined as 0. For
nodes that had a dependency on pruned gates, for instance,
_036_, the remaining wires _00_ and _01_ will drive a 0
value, as previously described for the netlist transformation
steps followed as an example with AxLS.

Figure 5 presents the results for the approximate netlist
generated for three 16-bit standard adders: Brent-Kung adder
(BKA), Kogge-Stone adder (KSA), and carry-lookahead adder
(CLA). These results correspond to circuit area reduction for
different target WCE and MED. In general, as it can be ob-
served, for a higher tolerable error, more savings are achieved.
However, using the described steps, for some accuracy targets,
the same area savings are obtained. This is the case for BKA
and CLA for the WCE error metric, for which no further netlist



modification can be applied without degrading the accuracy
beyond the defined threshold.

IV. CONCLUSION

In this paper, we presented AxLS, an open-source frame-
work for ALS techniques based on netlist transformation.
We described the main components in our framework and
presented an experimental evaluation performed with AxLS
for arithmetic circuits (standard adders) and two accuracy
metrics. AxLS demonstrates to be a suitable framework to
enable the test of ALS strategies. As future work, it is
foreseen the exploration of machine learning-based techniques
to estimate the impact of specific gate pruning in the output
error to avoid repetitive simulations.
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