
AxLS: An Open-Source Framework for Netlist
Transformation Approximate Logic Synthesis

Jorge Castro-Godı́nez∗†, Humberto Barrantes-Garcı́a†, Muhammad Shafique‡, Jörg Henkel†
∗Karlsruhe Institute of Technology (KIT), Germany

†Instituto Tecnológico de Costa Rica (TEC), Costa Rica
‡New York University Abu Dhabi (NYUAD), UAE

Corresponding Author: jorge.castro-godinez@kit.edu

Abstract—With the rise of Approximate Computing as an
energy-efficient design paradigm for error-tolerant applications,
different Approximate Logic Synthesis (ALS) approaches have
been proposed to generate approximate circuits from accurate
implementations automatically. In this paper, we present AxLS,
our open-source framework for ALS techniques based on struc-
tural netlist transformations. We describe our framework and
provide an experimental evaluation for arithmetic circuits with
our current implementation. AxLS enables the study and test
of existing ALS techniques based on netlist transformations and
the proposition of new ones. AxLS is available to download at
https://github.com/ECASLab/AxLS.

Index Terms—Approximate computing, logic synthesis, design
tools.

I. INTRODUCTION

The need to improve power and energy efficiency in com-
puting systems has motivated the emergence of new devices,
architectures, and design techniques. Approximate Computing
is one paradigm in which the required computational resources
of error-tolerant applications can be reduced in exchange for
some degradation in the accuracy of results [1]. Examples of
these error-tolerant applications include image and video pro-
cessing, computer vision, data mining, and machine learning
[2], [3].

With the rise of the approximate computing paradigm,
different Approximate Logic Synthesis (ALS) approaches have
been proposed to generate approximate circuits from accurate
implementations automatically. In the literature, three main
approaches to exploit functional simplification have been re-
ported [4]: netlist transformation [5], [6], Boolean rewriting
[7], [8], and approximate high-level synthesis [9], [10].

For the case of Boolean rewriting, open-source contributions
have been made [11]. However, to explore and implement
current ALS netlist transformation techniques reported in the
literature, develop methods for error modeling, and propose
new approaches, an open-source framework that enables it is
still missing.

Contribution: This paper presents AxLS, an open-source
framework for ALS techniques based on structural netlist
transformations. We describe our framework and provide an
experimental evaluation for arithmetic circuits with our current
implementation of AxLS. AxLS is available to the community
at https://github.com/ECASLab/AxLS.

II. AXLS FRAMEWORK

AxLS is a framework for ALS techniques based on the idea
of structural netlist transformations. Figure 1 depicts the main
components of our framework. As shown, AxLS requires the
Verilog RTL description of the circuit to be approximated.
A netlist is generated using a synthesis tool for a specific
standard cell technology library. From the same technology
library, particularly from the Verilog simulation models, a
description of the cells is created and put into an XML file. A
representation of the netlist is generated with a custom netlist
to XML function (v2xml) and the cell description. XML files
are easy to retrieve, manipulate, and save. Figure 2 presents a
code snippet of a toy netlist representation with XML, using
the NanGate 15nm technology library. Figure 3 shows a direct
acyclic graph (DAG) representation for this netlist example,
generated from the XML representation.

A post-synthesis simulation can be performed to obtain
gate-level switching activity values (saif file). This information
can be included in the XML netlist representation as part of
the gate’s properties, and it can be further used to guide the
netlist transformation criteria [12].

With an XML representation of the netlist, different approx-
imation criteria can be applied to transform the netlist. For
instance, gates can be pruned one by one considering their
impact on the output error and switching activity [5], genetic-
based algorithms can be used to mutate the netlist into approx-
imate versions by interchanging gates with wire connections
[13], or output pruning can be applied by removing all logic
gates that affect a specific primary output of the netlist.

Regardless of the netlist transformation technique followed,
an accuracy threshold is required for a defined error metric.
This accuracy target is used to assess if the approximations
applied creates an approximate netlist that still produces
acceptable results. According to the approximation criteria
that can be implemented within AxLS, a Verilog file with
the approximate netlist can be generated from the transformed
netlist described with XML. Using a custom XML to netlist
function (xml2v), this Verilog file can be generated every time
the approximate version’s accuracy is evaluated. The generated
netlist is based on the gates available in the cell library used
for the synthesis.



Cell
Extractionlib

Technology
Library

.xml

Cell
Description

Synthesis.v

RTL

.v

Netlist
v2xml .xml

Netlist

Approx.
Criteria

Accuracy
Threshold

.xml

Netlist
Transformed

Simulation saif

xml2v .v

Approximate
Netlist

Simulation

SynthesisCircuit
Metrics

Fig. 1. An overview of our automated AxLS framework. An XML representation of the synthesized netlist is created to manipulate it according to the
approximation criteria defined within AxLS. AxLS uses external tools for synthesis and simulation of the accurate and approximate versions of the netlist.

<?xml version="1.0" encoding="UTF-8"?>
<root>
<node name="INV_X2" var="u19">
<input name="A1" wire="n14" />
<output name="ZN" wire="n16" />

</node>
<node name="OAI21_X1" var="u23">
<input name="A1" wire="n14" />
<input name="A2" wire="n20" />
<output name="ZN" wire="n21" />

</node>
<node name="NAND2_X2" var="u33">
<input name="A1" wire="n16" />
<input name="A2" wire="n14" />
<output name="ZN" wire="S[1]" />

</node>
[ ... ]
<circuitinputs>
<input var="in[0]"/>
<input var="in[1]"/>

</circuitinputs>
<circuitoutputs>
<output var="S[0]"/>
<output var="S[1]"/>

</circuitoutputs>
</root>

Fig. 2. XML code for a netlist description example.

The approximate netlist can be simulated to produce ap-
proximate outputs. AxLS provides functionality to compare
the approximate results against accurate ones to obtain an
error distribution in the form of a probability mass function,
commonly use for accuracy estimations [14], and to generate
values for different error metrics from it (for instance, those
described in [13]). Although not depicted in Figure 1, the
corresponding testbench is required for any simulation, which
generates an output file with the approximate results. For this,
representative test vectors are required for the input bit-width
of the circuit to be approximated.

Once an approximate netlist is generated with satisfactory
accuracy, the synthesis tool can be used to produce circuit
metrics such as area, delay, and power consumption.

III. EVALUATION

The current state of AxLS has been implemented using
Python language. As depicted, AxLS relies on external tools

4 Automatic Hardware Generation Tool 23

• input/output. Those tags are used to represent a connection between a logic gate

and an internal circuit wire. It contains the following attributes.

– name: Name of the input/output of the circuit. Obtained from the Technology

Library used to synthesize the circuit.

– wire: Name of the cable to which the wire is connected in a given input/output.

– delete** : If true, the logic needed exclusively to produce this wire signal could

be deprecated.

Using this format, the circuit is represented as a list of nodes in XML, each node

represents a logic gate with their inter-connections to other gates. An example of

the XML file is shown in Figure 4.2.

<?[PO�YHUVLRQ="1.0"�HQFRGLQJ="UTF-8"?>
<rooW>
���<node�QDPH="INV_X2"�YDU="X19">
������<inpXW�QDPH="A1"�ZLUH="Q14"�/>
������<oXWpXW�QDPH="ZN"�ZLUH="Q16"�/>
���</node>
���<node�QDPH="OAI21_X1"�YDU="X23">
������<inpXW�QDPH="A1"�ZLUH="Q14"�/>
������<inpXW�QDPH="A2"�ZLUH="Q20"�/>
������<oXWpXW�QDPH="ZN"�ZLUH="Q21"�/>
���</node>
���<node�QDPH="NAND2_X2"�YDU="X33">
������<inpXW�QDPH="A1"�ZLUH="Q16"�/>
������<inpXW�QDPH="A2"�ZLUH="Q14"�/>
������<oXWpXW�QDPH="ZN"�ZLUH="S[1]"�/>
���</node>
���[�...�]
���<circXiWinpXWV>
������<inpXW�YDU="LQ[0]"/>
������<inpXW�YDU="LQ[1]"/>
���</circXiWinpXWV>
���<circXiWoXWpXWV>
������<oXWpXW�YDU="S[0]"/>
������<oXWpXW�YDU="S[1]"/>
���</circXiWoXWpXWV>
</rooW>

Q16

X19

Q21

X23

Q24

X24

X32

Q14 Q14

Q14

LQ>1@

Q20 Q20

LQ>0@

S>0@

X33

S>1@

Figure 4.2: Sample of the circuit represented as an XML file.

Some of the benefits of this representation is that these files could be saved and

loaded quickly. The Python Element Tree library allows searches inside the structure

as if it were a database using XPath syntax. XPath syntax could search XML tags

filtering them by their attribute values or navigate through the circuit. For example,

with the following line:

root.findall("./node/input[@wire=’n54’]/..")

The algorithm gets every node which has an input connected to wire n54. Once

the circuit is represented in XML, two techniques were implemented to reduce the

Fig. 3. DAG representing an XML netlist example.

for synthesis and simulation. Currently, AxLS uses the Yosys
tool [15] for circuit synthesis and circuit area estimation, and
Icarus Verilog [16] for netlist simulation. The results here
presented were obtained using the NanGate 15nm technology
library.

We present an evaluation of AxLS for arithmetic circuits,
particularly standard adders. As approximate criteria, the fol-
lowing steps have been applied:

• Considering a primary input bit constant, all affected
nodes (gates) are explored. A node is considered constant
if all its inputs are constant, and then all dependencies of
such node are explored. Each of the considered nodes
is pruned, one by one, and accuracy is checked at each
step. If the output error goes beyond the given threshold,
the last pruning is reversed, and other nodes are further
explored.

• After exploring from the perspective of the primary in-
puts, nodes are explored considering a primary output bit
constant. All nodes affecting such output are considered,
and a one by one pruning is also performed with accuracy
evaluations after every step. Similar to before, if the
output error goes beyond the given threshold, the last
pruning step is reversed, and other nodes affecting such
output are explored.



cin

_36_

_35_

in1_0

_31__32_ _33_in1_1

_17_ _37_ _38_in1_2

_20__21_ _22_ in1_3

_25_ _27__28_

in2_0

in2_1

in2_2

in2_3

out_0out_1

out_2 out_3 out_4

_18_

_07_

_19_

_24_

_08__26_

_08_

_29_

_14_

_30_

_14_

_09_

_23_

_10_

_12_

_11__11_

_13_ _15__16_

_34_

_00__00_

_03__04_ _04_

_01_ _02_

_05_ _06_

(a) Accurate netlist.

cin

_36_

in1_0 in1_1

in1_2

_22_in1_3

_25__27_ _28_

in2_0 in2_1

in2_2

in2_3

out_0 out_1 out_2

out_3out_4

_19_

_26_

_08_

_29_

_14_

_30_

_14_

_06_ _05_

_11_

_13_

_09_

_15_ _16_

_04_

_00_ _01_

(b) Approximate netlist for WCE = 8.

0 1 2 3 4 5 6
0

0.10

0.20

0.30

ED

p
(E

D
)

(c) Error distribution for the approximate
netlist generated for WCE = 8.

Fig. 4. Direct acyclic graph representation of an accurate and approximate
4-bit ripple-carry adder. The approximate version has been modified with a
WCE constraint of 8.

• For those nodes and outputs removed, a 0 value is
assigned. For instance, nodes depending on others pruned
will receive a 0 as input instead of the expected result
previously provided by the now missing node.

• For the scope of this evaluation, these steps are repeated
for the half less significant bits (LSB). So, for instance,

0 20 40 60 80 100

0.7

0.8

0.9

1

WCE

N
or

m
al

iz
ed

A
re

a

BKA KSA CLA

0 20 40 60 80 100

0.6

0.8

1

MED
N

or
m

al
iz

ed
A

re
a

Fig. 5. Evaluation using AxLS for three 16-bit adders, BKA, KSA and, CLA,
and two error metrics, WCE and MED.

for a 16-bit adder, these approximation criteria are applied
to the first 8 LSB of the inputs and then to the 8 LSB of
the output.

Figure 4 depicts a simple example of a 4-bit ripple-carry
adder. The approximate netlist (Figure 4b) has been generated
following the previous steps described and for a worst-case
error (WCE) of 8 as an accuracy threshold. WCE represents
the maximum error tolerable for an approximate design, de-
spite its probability of occurrence. As it can be noticed from
the error distribution in Figure 4c, the higher error produced
is 6, with a very low probability. From this error distribution,
other error metrics can be calculated, such as the mean error
distance (MED), which is 2.2 for this case.

As can be observed, the resulting netlist depends solely on
the two most significant bits of the inputs and the carry-in
signal. Just two of the output bits are calculated, while the
others (not depicted in the diagram) are defined as 0. For
nodes that had a dependency on pruned gates, for instance,
_036_, the remaining wires _00_ and _01_ will drive a 0
value, as previously described for the netlist transformation
steps followed as an example with AxLS.

Figure 5 presents the results for the approximate netlist
generated for three 16-bit standard adders: Brent-Kung adder
(BKA), Kogge-Stone adder (KSA), and carry-lookahead adder
(CLA). These results correspond to circuit area reduction for
different target WCE and MED. In general, as it can be ob-
served, for a higher tolerable error, more savings are achieved.
However, using the described steps, for some accuracy targets,
the same area savings are obtained. This is the case for BKA
and CLA for the WCE error metric, for which no further netlist



modification can be applied without degrading the accuracy
beyond the defined threshold.

IV. CONCLUSION

In this paper, we presented AxLS, an open-source frame-
work for ALS techniques based on netlist transformation.
We described the main components in our framework and
presented an experimental evaluation performed with AxLS
for arithmetic circuits (standard adders) and two accuracy
metrics. AxLS demonstrates to be a suitable framework to
enable the test of ALS strategies. As future work, it is
foreseen the exploration of machine learning-based techniques
to estimate the impact of specific gate pruning in the output
error to avoid repetitive simulations.

ACKNOWLEDGMENT

This work was partially supported by the Costa Rica Insti-
tute of Technology.

REFERENCES

[1] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate Computing: A
Survey,” IEEE Design Test, vol. 33, no. 1, pp. 8–22, Feb. 2016.

[2] Y.-K. Chen, J. Chhugani, P. Dubey, C. J. Hughes, D. Kim, S. Kumar,
V. W. Lee, A. D. Nhuyen, and M. Smelyanskiy, “Convergence of
Recognition, Mining, and Synthesis Workloads and Its Implications,”
Proceedings of the IEEE, vol. 96, no. 5, pp. 790–807, May 2008.

[3] J. Castro-Godı́nez, D. Hernández-Araya, M. Shafique, and J. Henkel,
“Approximate Acceleration for CNN-based Applications on IoT Edge
Devices,” in 2020 IEEE 11th Latin American Symposium on Circuits &
Systems (LASCAS), 2020, pp. 1–4.

[4] I. Scarabottolo, G. Ansaloni, G. A. Constantinides, L. Pozzi, and
S. Reda, “Approximate Logic Synthesis: A Survey,” Proceedings of the
IEEE, pp. 1–19, 2020.

[5] J. Schlachter, V. Camus, K. V. Palem, and C. Enz, “Design and
Applications of Approximate Circuits by Gate-Level Pruning,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 5, pp. 1694–1702, 2017.

[6] I. Scarabottolo, G. Ansaloni, and L. Pozzi, “Circuit Carving: A Method-
ology for the Design of Approximate Hardware,” in 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE), Mar.
2018, pp. 545–550.

[7] Y. Wu and W. Qian, “An Efficient Method for Multi-Level Approximate
Logic Synthesis under Error Rate Constraint,” in 53nd Design Automa-
tion Conference (DAC), 2016, pp. 1–6.

[8] S. Hashemi, H. Tann, and S. Reda, “BLASYS: Approximate Logic
Synthesis Using Boolean Matrix Factorization,” in 55th Annual Design
Automation Conference (DAC), Jun. 2018, pp. 55:1–55:6.

[9] S. Lee, L. K. John, and A. Gerstlauer, “High-Level Synthesis of
Approximate Hardware under Joint Precision and Voltage Scaling,” in
2017 Design, Automation & Test in Europe Conference & Exhibition
(DATE), Mar. 2017, pp. 187–192.

[10] J. Castro-Godı́nez, J. Mateus-Vargas, M. Shafique, and J. Henkel,
“AxHLS: Design Space Exploration and High-Level Synthesis of Ap-
proximate Accelerators using Approximate Functional Units and Ana-
lytical Models,” in 2020 IEEE/ACM 39th International Conference on
Computer-Aided Design (ICCAD), 2020.

[11] J. Ma, S. Hashemi, and S. Reda, “Approximate Logic Synthesis Using
BLASYS,” in Workshop on Open-Source EDA Technology (WOSET),
no. 5, Nov. 2019.

[12] A. Lingamneni, C. Enz, J.-L. Nagel, K. Palem, and C. Piguet, “Energy
Parsimonious Circuit Design through Probabilistic Pruning,” in 2011
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2011, pp. 1–6.

[13] Z. Mrazek, Z. Vasicek, and L. Sekanina, “EvoApproxLib: Extended
Library of Approximate Arithmetic Circuits,” in Workshop on Open-
Source EDA Technology (WOSET), no. 10, Nov. 2019.

[14] J. Castro-Godı́nez, S. Esser, M. Shafique, S. Pagani, and J. Henkel,
“Compiler-Driven Error Analysis for Designing Approximate Acceler-
ators,” in 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE), Mar. 2018, pp. 1027–1032.

[15] C. Wolf, “Yosys Open SYnthesis Suite,” http://www.clifford.at/yosys/.
[16] S. Williams, “Icarus Verilog,” http://iverilog.icarus.com/.


