
GOLDMINE: A tool for enhancing verification
productivity

Debjit Pal, Vibhor Dodeja, Anjana S. Kumar, Shobha Vasudevan
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, USA

Email: {dpal2, vdodeja2, anjanas3, shobhav}@illinois.edu

Abstract—We present GOLDMINE, an efficient, modular, scal-
able, open-source tool with a set of rich features targeting a wide
spectrum of hardware design analysis. GOLDMINE uses multiple
technologies as part of its design analysis at the Register Transfer
Level (RTL). In this work, we showcase different features of
GOLDMINE for various hardware verification use cases such as
design understanding, assertion generation, debugging and bug
localization, assertion ranking, and coverage analysis.

I. INTRODUCTION

With ever increasing design complexity, hardware verifica-
tion has become one of the most critical tasks of the modern
hardware design cycle. Hardware verification is performed un-
der aggressive time-to-market schedule, takes up to 2 years per
design, and accounts for more than 70% of design costs [2].
Hardware design verification comprises multiple components
including design understanding, summarizing design behavior,
debugging and bug localization, test generation etc.

GOLDMINE [6], [7] was originally developed in 2010 [13]
as an assertion generation tool in published literature to
effectively automate a ubiquitous, but manual assertion writing
process. Since then many other assertion generation tools have
been developed in industry [10] and in academia [3], [8], [9].
In recent years, we have repurposed GOLDMINE by integrat-
ing a plethora of new features that have enabled new use-
cases of GOLDMINE across a wide spectrum of verification
tasks, thereby enhancing GOLDMINE’s viability beyond its
primary goal of assertion generation. Figure 1 shows the dif-
ferent components of GOLDMINE. GOLDMINE encapsulates
design information in various data structures and analyzes
them with complex algorithms. These data structures can
be used independently for various verification applications
beyond assertion generation. In its current implementation, we
have modularized key components of GOLDMINE in different
ways to make it useful for a versatile set of verification tasks.

Verification, in general, is a battle of scale and intractable.
Over the past decades many techniques have been proposed
for various verification tasks, but all of them suffer from the
scalability issue. Through GOLDMINE, we have established
that data-driven statistical reasoning like machine learning
(ML) can tame the scalability issue and make many verifica-
tion problems tractable. GOLDMINE integrates two solution
spaces — statistical, dynamic techniques (such as ML) and
deterministic, static techniques (such as static analysis and
formal verification) to provide a solution to the different
verification problems. Static analysis makes generalizations

and abstractions but is computationally intensive. On the other
hand, data-driven techniques such as ML are computationally
efficient but lack perspective and domain knowledge. In [6],
[7] powerful algorithms for the GOLDMINE were developed
that could surpass human generated assertions in Register
Transfer Level (RTL).

In GOLDMINE, the static analyzer comprises algorithms
i) to identify important design variables with respect to a
given output, ii) to calculate transitive symbolic functional
dependencies of a variable in the context of an output, iii) to
calculate sequential dependencies over design variables across
multiple clock cycles per design output, and iv) to summarize
relevant design information in succinct data structures. Using
the information gathered by the static analyzer, the dynamic
analyzer can generate testbenches automatically to explore
random stimulus space for the design. The assertion miner
uses information from both static analyzer and dynamic an-
alyzer to generate assertions. Finally, the assertion analyzer
analyzes each of the assertions to systematically identify the
design statements that are in the scope of that assertion.

We outline our motivation for the versatile set of verification
tasks that GOLDMINE can now be applied to. Each of the
verification tasks can be invoked from GOLDMINE command-
line via appropriate command-line flags.1

1) Design understanding: The static analyzer
of GOLDMINE can be repurposed for design
understanding, design interpretation, identifying
opportunities for design optimization, and removing
design redundancies. The outputs of static analyzer
can also identify important design components with
respect to a given variable. Figure 1 shows that multiple
data structures that generate alternate perspectives of
the same design can be generated as a part of static
analysis.

2) Summarizing design behavior: Summarizing design
behavior refers to generating assertions from simulation
traces. Assertions generated from the simulation traces
can generate succinct explanations of the simulation
“data.” Assertions can be used as “golden” design speci-
fications, in a system-level reference model, or as guide-
lines for future design enhancements and optimizations.

3) Figure of merit for assertions: To enhance verification
quality, it is imperative to use high-quality assertions

1For more details, please see Section II.

CDFGsCDFGsCOIs + Importance +
Complexity

COIs + Importance +
Complexity

2. Dynamic Analyzer

5. Assertion Analyzer

1. Static

Analyzer

2.1 Test bench
generator

2.2 Trace data
generator

3. Assertion

Miner

4. Formal

Verifier

5.1 SRank
analyzer

5.2 IRank
analyzer

5.3 Assertion rank
aggregator

Clocks, Reset,
I/Put, O/Put, Reg, Module COIs

Simulation
trace data

Mined
assertions

User-
defined

assertions

User
generated

trace

COIs +
Importance +

Complexity

VDGs

Ranked
assertions

RTL design

Verified
assertions

Fig. 1: GOLDMINE architecture – Each edge in the flow is marked with the output of the source component and the input of the destination
component. A source component can generate multiple outputs to be used by different destination components. VDG: Variable dependency
graph, CDFG: Control data flow graph, and COI: Cone of influence.

that can capture subtle and important design behaviors.
To automatically identify such high-quality assertions,
constructing a quantitative figure of merit is a critically
important problem. We have described a ranking strategy
for assertions based on several goodness metrics [4],
[5], [11]. We have implemented this ranking scheme
in the assertion analyzer. The ranked list of assertions
accelerates verification closure by identifying the set of
most valuable assertions for verification tasks.

4) Ranking user-generated/manual assertions: While
GOLDMINE-generated assertions are ranked using the
assertion analyzer, user-written assertions can also be
ranked using the current implementation of GOLDMINE.
We ensure this by combining the static analyzer and the
assertion analyzer modules, such that they can function
independently as a ranking engine.

5) Coverage analysis: While it is important to summarize
design behavior in terms of assertions, it is equally
important to know the design statements that are covered
by an assertion. In [1] we have developed a notion
of correctness-based statement coverage in RTL for an
assertion. This is one of the first attempts to rigorously
define assertion coverage in RTL. We have incorporated
correctness-based statement coverage in GOLDMINE as
part of SRank Analyzer. Intuitively, SRank Analyzer
identifies the statements that are in the scope of an
assertion i.e., the design statements that needs to be
executed for an assertion to be true.

6) Debugging and bug localization: Debugging and bug
localization is an important verification task to ensure
that an implementation of a hardware design follows
the specification. Much like summarizing design behav-
iors in terms of assertions, one can summarize failing

simulation traces by mining bug symptoms in the form
of assertions. Just as assertions cover statements in the
design, statements covered by the bug symptom can
be viewed as being in the scope of the symptom. The
collective set of symptoms for a design output will then
correspond to localized buggy code zones [12] that are
the most suspicious for debugging a bug in that output.

Apart from the above mentioned use cases, the different
technologies in GOLDMINE can be used in writing directed
and constrained-random testbenches, to identify missing de-
sign intent and design hooks for efficient debugging.2

II. USE CASES OF GOLDMINE

We show the complete GOLDMINE tool flow in Figure 1
annotated with the different capabilities that are integrated
into GOLDMINE to broaden its use cases. In this section,
we explain different verification use cases of GOLDMINE as
referred in Section I. We use Verilog code of a 2-port arbiter
of Figure 2a as a running example. We have used a _BUG_
pragma directive to introduce a bug in L19 of the same design
to explain debugging and bug localization.3

A. Design understanding

For design understanding, the static analyzer can be invoked
from command-line via -S/--static_dump option. The
static analyzer captures various design information in multiple
data structures e.g., control-data flow graph (CDFG), variable
dependency graph (VDG), cone-of-influence (COI), variable
definition chain, and variable use chain.

2The GOLDMINE implementation with all the above mentioned technolo-
gies has been made available at https://goldmine.csl.illinois.edu.

3For brevity, we have skipped details of tool usage. The details can be
found at https://bitbucket.org/debjitp/goldminer/src/master/README.

A control-data flow graph (CDFG) is a directed acyclic
graph (DAG) for each procedural block in the Verilog design.
Each node in the CDFG represents a Verilog construct. A
directed edge represents control/data flow from a source node
to a destination node. Multiple such CDFGs can be fused to
construct the complete CDFG of a Verilog design. Figure 2b
shows the complete CDFG of the 2-port arbiter in which
9:AL, 11:IF, 12:NS, 14:NS, and Leaf_9:AL forms the
CDFG for the procedural block at L9 of the 2-port arbiter.

A variable dependency graph (VDG) is a weighted di-
rected graph summarizing dependencies among design vari-
ables. Each node represents a design variable and each edge
represents a control/data dependency among a pair of design
variables. The edge weight refers to the number of times a
particular variable dependency observed in a design. Figure 2c
and Figure 2d show the VDG for the non-buggy and buggy
2-port arbiter design respectively.

A cone of influence (COI) is a DAG per output variable
capturing its dependencies on other design variables across
multiple design cycles. Each node of a COI is a cycle
annotated design variable where the cycle number is prefixed
with the variable name. The COI encompasses both data and
control dependencies of an output on other variables. Figure 2e
and Figure 2f show the COI for the primary output gnt1 of
the non-buggy and buggy 2-port arbiter design respectively.

A variable definition chain (VDC) is a data structure to
record all definitions of a design variable along with its control
and data dependencies. A variable use chain (VUC) is a data
structure to record all usages of a design variable. Figure 3
shows VDC and VUC for the state variable.

B. Summarizing design behavior

To summarize design behaviors, assertion generator can be
invoked using -m, -c, -r, -I, -u, -F, and -V command-line
options. Figure 4a shows two assertions for the primary output
gnt1 of the 2-port arbiter.

C. Figure of merit for assertions

To identify high-quality assertions, we define two metrics
importance and complexity [5], [11].

The importance of an assertion estimates its ability to
cover important execution paths between satisfaction of its an-
tecedent and consequent while the complexity of an assertion
estimates its ability to cover complex behaviors that would
require reasoning across multiple clock cycles. We combine
importance and complexity to calculate an assertion’s final
rank score such that an assertion that captures important
design behavior in least complex way is ranked higher.

The IRank analyzer of Figure 1 computes the importance
and complexity of each of the assertions. IRank analyzer is
invoked automatically whenever the assertions are generated
as demonstrated in Section II-B. Figure 4a shows assertion
importance, assertion complexity, and assertion rank score for
two assertions for the 2-port arbiter.

D. Coverage analysis

For coverage analysis, we use SRank analyzer of Figure 1.
The SRank analyzer can be invoked via -a command-line
option. When SRank analyzer is invoked, GOLDMINE auto-
matically computes an assertion’s importance and complexity
score (c.f. Section II-C) and an assertion’s rank based on
assertion’s statement coverage. Finally, the assertion rank
aggregator combines importance/complexity-based rank and
the statement coverage-based rank to generate a final ranking
for a set of assertions.

E. Debugging and bug localization

The combined outputs of static analyzer, assertion miner,
and assertion analyzer of GOLDMINE aid in design debugging
and bug localization. A verification engineer can use valuable
data structures from the static analyzer such as CDFG, VDG,
and COI to understand complex and subtle design bugs that
require temporal reasoning. In addition to that, the assertion
miner can be used to summarize failing traces in terms of
temporal assertions that are representative of bug symptoms.
The SRank analyzer component of assertion analyzer can be
used to identify the design statements that are in the scope
of those bug symptoms. Such automation-assisted localization
can facilitate much of the manual debugging procedure.

In Figure 2a, when the _BUG_ pragma is enabled, the
CDFG remains unchanged as that of Figure 2b. However the
inspection of the VDG (c.f. Figure 2d) and the COI of gnt1
(c.f. Figure 2f) show that the intended dependence of gnt1 on
req2 is not present, thereby the design is failing to capture the
“arbiting” design intent of the arbiter. On simulating the buggy
design, the monitors for the primary output gnt1 failed. When
we summarize the failing traces of gnt1, we find that the
failure symptoms in Figure 4b shows a trivial relationship
between req1 and gnt1 that refutes design intent, thus
localizing the root cause of the failure.

III. CONCLUSION

GOLDMINE generates multiple design perspectives as a part
of the assertion generation task. It does so by combining two
diverse technologies – static analysis and data-driven statistical
reasoning in complementary, synergistic ways. These perspec-
tives are of high value to a verification engineer. While we
have outlined some example verification use cases that can use
the different components of GOLDMINE, the algorithms and
data structures in GOLDMINE can be creatively employed to
a wide range of verification and design analysis applications.

REFERENCES

[1] V. Athavale, S. Ma, S. Hertz, and S. Vasudevan. Code coverage of
assertions using RTL source code analysis. Design Automation Conf.
(DAC), 2014.

[2] W. Chen, S. Ray, J. Bhadra, M. S. Abadir, and L. Wang. Challenges
and trends in modern soc design verification. IEEE Des. Test, 2017.

[3] A. Danese, T. Ghasempouri, and G. Pravadelli. Automatic extraction
of assertions from execution traces of behavioural models. Design,
Automation, and Test in Europe (DATE), 2015.

[4] S. Hertz. Enhancing quality of assertion generation: Methods for au-
tomatic assertion generation and evaluation. Master’s thesis, University
of Illinois at Urbana-Champaign, Urbana, IL USA, 2013.

1 `define _BUG_
2 module arb2(clk,rst,req1,
3 req2,gnt1, gnt2);
4 input clk, rst;
5 input req1, req2;
6 output gnt1, gnt2;
7 reg state;
8 reg gnt1, gnt2;
9 always@(posedge clk or

10 posedge rst)
11 if(rst)
12 state <= 0;
13 else
14 state <= gnt1;
15 always@(*)
16 if (state)
17 begin
18 `ifdef _BUG_
19 gnt1 = req1;
20 `else
21 gnt1 = req1 & ˜req2;
22 `endif
23 gnt2 = req2;
24 end
25 else
26 begin
27 gnt1 = req1;
28 gnt2 = req2 & ˜req1;
29 end
30 endmodule

(a)

16:IF

17:BL
gnt1 = req1 & ~req2;

gnt2 = req2;

state

26:BL
gnt1 = req1;

gnt2 = req2 & ~req1;

!(state)

Leaf_15:AL

15:AL

9:AL

11:IF

Leaf_9:AL

12:NS
state <= 0;

rst

14:NS
state <= gnt1;

!(rst)

(b)

req1

gnt2

gnt1

state

req2

rst

(c)

req1

gnt2

gnt1

state req2

rst

(d)

[1]state

[1]gnt1

state

[1]rst

gnt1

req1 req2

[1]req2 [1]req1

(e)

[1]state

[1]gnt1

state

[1]rst

gnt1

req1

[1]req1

(f)

Fig. 2: Various outputs of GOLDMINE on a arbiter design – (a) Verilog code for 2-port arbiter with a _BUG_ pragma. When _BUG_
pragma is defined, line 19 will be included during design compilation whereas when _BUG_ pragma is undefined, line 21 will be included
during design compilation. (b) CDFG of 2-port arbiter with _BUG_ undefined. (c) VDG with _BUG_ undefined. (d): VDG with _BUG_
defined. (e) COI of gnt1 with _BUG_ undefined. (f) COI of gnt1 with _BUG_ defined.

Var Var def chain
‘state’: ‘CDeps’: [[[], [‘rst’]], [[], [‘rst’]]],

‘CLines’: [[None, ‘11:C’], [None, ‘11:C’]],
‘Clocked’: True,
‘DDeps’: [[], [‘gnt1’]],
‘DLines’: [‘12:D’, ‘14:D’]

(a)
Var Var use chain

‘state’: ‘DefVars’: [None, None]
‘Lines’: [‘16:C’, ‘25:C’]
‘Sensitivities’: [[‘state’], [‘!state’]]

(b)

Fig. 3: Static analysis data structures – (a) Variable definition chain
for variable state. CDeps: control-dependencies of the variable,
CLines: Line number of control-dependencies, Clocked: Indicates if
procedural block is clock sensitive, DDeps: Data-dependencies of the
definition, DLines: Line numbers of data-dependencies. Each of the
component lists in CDeps, CLines, DDeps, and DLines correspond
to a definition of state. (b) Variable use chain for variable state.
DefVars: Usages in variable definitions, Lines: Line numbers of
usages, Sensitivities: All usages of a variable.

[5] S. Hertz, D. Pal, S. Offenberger, and S. Vasudevan. A figure of merit for
assertions in verification. In Asia and South Pacific Design Automation
Conf. (ASP-DAC), 2019.

[6] S. Hertz, D. Sheridan, and S. Vasudevan. Mining hardware assertions
with guidance from static analysis. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 2013.

[7] L. Liu and S. Vasudevan. Automatic generation of system level
assertions from transaction level models. J. Electronic Testing, 2013.

[8] J. Malburg, T. Flenker, and G. Fey. Property mining using dynamic

ID Assertion I C RS R

1. (req2 == 1 ^ state == 1) ##1
(req1 == 1) Ñ (gnt1 == 1) 3.30 13 0.254 1

2. (req1 == 1 ^ req2 == 0) Ñ

(gnt1 == 1) 0.72 5 0.144 4

(a)
ID Assertion I C RS R
1. (req1 == 1) Ñ (gnt1 == 1) 0.505 4 0.126 1
2. (req1 == 0) Ñ (gnt1 == 0) 0.505 4 0.126 2

(b)

Fig. 4: Comparing assertions for the target variable gnt1
– (a) Assertions for non-buggy design. (b) Symptoms for
buggy design. I Assertion importance score. C: Assertion
complexity score. RS: Assertion rank score. R Assertion rank.

dependency graphs. Asia and South Pacific Design Automation Conf.
(ASP-DAC), 2017.

[9] E. E. Mandouh and A. G. Wassal. Automatic generation of hardware
design properties from simulation traces. ISCAS, 2012.

[10] NextOp. www.nextopsoftware.com/BugScope-assertion-synthesis.html.
[11] D. Pal, S. Offenberger, and S. Vasudevan. Assertion ranking using

RTL source code analysis. IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), 2020.

[12] D. Pal and S. Vasudevan. Symptomatic bug localization for functional
debug of hardware designs. Int’l Conference on VLSI Design, 2016.

[13] S. Vasudevan, D. Sheridan, S. J. Patel, D. Tcheng, and D. R. Johnson.
Goldmine: Automatic assertion generation using data mining and static
analysis. Design, Automation, and Test in Europe (DATE), 2010.

