CFU Playground: Build your own ML Processor
using Open Source

Tim Callahan, Tim Ansell
Google
Sunnyvale, California
{tcal,tansell } @ google.com

Joseph Bushagour!

Purdue University
West Lafayette, Indiana
tPast intern at Google

Abstract—The CFU (Custom Function Unit) Playground al-
lows you to design and build machine learning (ML) accelerators
extending an FPGA-based RISC-V core, running on an FPGA
board at your desk. Because the CPU is soft, it can be both
tailored (e.g. cache sizes modified) and extended (new instructions
added through the use of a Custom Function Unit). Push-button
builds of the customized processor combined with a provided
interactive software test/measurement harness allows for very
rapid edit-compile-profile cycles (on the order of minutes) at
each stage of accelerator development.

A primary goal of the CFU Playground is to provide a
delightful and fun experience to the developer, by, as far as
possible, removing the burden of maintaining infrastructure
such as configuring toolchains, writing test harnesses, building
performance measurement jigs, or editing Makefiles. This rapid,
lightweight framework lets the user realize a large performance
benefit from a relatively small investment in creating customized
hardware.

CFU Playground bundles together open source software (Ten-
sorFlow, GCC), open-source RTL generation IP and toolkits
(LiteX, VexRiscv, Migen, nMigen), and open-source FPGA tools
for synthesis, place, and route (yosys, nextpnr, vpr, etc.). By
using open source for the entire stack, we give the user access
to customize and co-optimize hardware and software, resulting
in a specialized solution unencumbered by licensing restrictions
and not tied to a particular FPGA or board.

CFU Playground is available under an Apache 2.0 license
at https://github.com/google/CFU-Playground. Online documen-
tation is available at https://cfu-playground.readthedocs.io.

Index Terms—FPGA, Machine Learning, Open Source EDA,
Open Source Hardware

I. INTRODUCTION

The genesis of the CFU Playground was a Google internal
project that requires low power, high performance ML infer-
encing. For various reasons, the project’s principals chose a
small FPGA and Tensorflow Lite for Microcontrollers (TFLM)
[1] as the processing platform. This then left the problem of
how to measure and then improve the performance of the
selected models on a soft RISC-V core on the FPGA.

In this work, we consider the ML model to be fixed, but
the ML processor and the ML libraries to be subject to
optimization. In short, we adapt the hardware and software
to the specific model. Note that this is reversed from many
research projects in the area of Neural Architecture Search
[2], which strive to optimize the ML network given a fixed
cost model of the target hardware (CPU, GPU, or TPU).

Alan V. Green, David Lattimore, Dan Callaghan
Google
Sydney, Australia
{avg,dml,dcallagh} @google.com

II. CUSTOMIZING THE SOFT CPU

Because the starting point is a fully functional RISC-V CPU
built using the FPGA fabric, TFLM and application software
will run immediately, although it will likely not meet the
design requirements of latency and power. We must exploit
the fact that the CPU is not fixed, that instead we can tailor
it and extend it, to achieve the desired performance.

If you assume that the CPU is provided as Verilog source
code, then the prospect of editing the Verilog to attempt to
improve performance would not be an attractive approach;
it requires expertise, is time-consuming, and would require
extensive verification to ensure that your modifications did not
introduce errors.

Instead, we use the open source, highly configurable,
generator-based VexRiscv [3] soft CPU, which allows us to
generate exactly the CPU best suited to our needs. The number
of pipeline stages, the branch prediction strategy, the cache
sizes, and many other parameters are all configurable.

A. Custom Instructions

R-format
instruction

| funct7 I rsZI rs1 IfunctBI rd Iopcode ‘

When the CPU sees an
instruction with

|
i
i
!
,,,,,,,,,,,,,,,,,,,,,, etim—] | opcode==CUSTOMO,
sb 5 ! the operands are sent to
|| the CFU along with

Register _ | {funct7funct3}

File [° |
32b -—
32b, 320 § ‘é 1
rrrrrrrrrrrrrrrrr ¢ . ! valid
) © [ready
bypass c E f 25
% =1 }32b E
T e Q||| function
K ALU x|
‘ H 32b

CPU |

Fig. 1. CPU augmented with CFU (Custom Function Unit).

We then allow extensions to the RISC-V ISA by adding
new instructions in the reserved CUSTOMO opcode space.
VexRiscv is configured to generate a fixed CFU interface, to
which the user’s CFU is attached (Figure 1). Any instruction
with its opcode field specifying CUSTOMO is sent to the CFU
interface, along with two operands from the register file and

https://github.com/google/CFU-Playground
https://cfu-playground.readthedocs.io

VexRiscV Custom |
CPU - Function |

32-bit Wishbone Bus

{

RAM Driver |«

LiteX SOC/

Fig. 2. Full SoC provided by LiteX. The user implements only the CFU.
Digilent Arty A7-35T board illustrated.

256MB
DDR RAM

A

USB-UART >

LEDs < >

sng |esayduad

10 additional bits (funct7 + funct3) from the instruction to
specify which custom instruction is to be executed.

The CFU can contain state. We assume an embedded com-
puting context where we don’t worry about context switches.
The CFU does not have its own path to system memory. Any
data into and out of the CFU must go through the CPU.

The CPU-CFU interface provides a very tight coupling
between the CPU and the added custom functionality. During
FPGA synthesis/place/route, the “interface” disappears, and
the CFU essentially becomes part of the CPU pipeline.

The new instructions can be used from C or C++ using an
inline assembly macro that we provide. No modification of
the RISC-V GCC toolchain is needed. When a new custom
instruction is added by modifying your CFU, it is instantly
available.

III. THE REST OF THE PIECES

The CFU Playground includes everything needed to provide
a useful environment for developing your tailored processor
(Figure 3):

o A LiteX [4] SoC configuration (Figure 2). LiteX pro-
vides everything needed to turn a CPU into a complete
functioning computer: it provides a system bus, on-chip
RAM, and peripherals to connect to the outside world,
such as UART over the USB connection.

e A framework for building new CFU implementations,
using either nMigen [5] or plain Verilog.

¢ An implementation flow using either vendor tools (e.g.
Vivado) or open source tools (see Figure 4).

o Multiple common tinyML models, including keyword
spotting and person detection.

o An interactive menu-driven C program to run unit tests,
perform TFLM inferencing, and measure performance.

o A software build system that allows a developer to
override arbitrary files of C code, including TFLM code.

o Scripts to automate testing on the FPGA board.

R e e e S . <\
Software | ! Custom Test Code l [Models and Test Data]
L ’
T T T T)
Performance ! Custom TfLM Ops 1
Measurement [S-=c-c==-c=c= ===
Tensorflow Lite
l Common Libraries l for Microcontrollers
\[RISCV Compiler |
p
LiteX) [t
Gateware | soc VexRiscV I Gustom Function
CPU I Unit
[Open-source FPGA tools I
r ™
FPGA
Hardware (FPGA Board)
. s

Fig. 3. CFU Playground Overview.

IV. DEVELOPMENT CYCLE

To understand how the CFU Playground assists the devel-
oper, let’s examine an example acceleration of the pdti8
model (person detection 96x96 grayscale, int8 quantized).

A. Set up

The developer begins by cloning the git repository and
following the provided instructions to install dependencies.
They then copy the project template directory to make a new
project. It is recommended that the developer commit the new
project directory before any making any changes. Once the
new project directory is established, the developer builds both
the FPGA gateware and the C software with a simple make
command. At this point, there is no CFU.

B. Set a baseline

The developer then profiles pdti8 to understand baseline
performance. TFLM’s built-in profiling shows the name and
running time of each TFLM operation as it executes.

pdti8 uses 5 types of ops, but 70% of time is spent
performing CONV_2D, 30% in DEPTHWISE_CONV, and neg-
ligible time elsewhere.

C. Simplify and Specialize

Given that it takes the bulk of execution time, CONV_2D
seems the best place to start. The developer:

1) Adds printfs to print out parameters and identify
constant parameters

2) Specializes C implementations to take advantage of
those constants and remove unused code

3) Uses cycle counters to profile parts of the C code for
the operation, identifying hot spots

4) Based on profiling adjusts C code to cache frequently
used variables or unroll loops.

On CONV_2D, we are able to get 2x acceleration fairly
quickly this way (software specialization and optimization).

FPGA

Open Source Tools

Example Supported Board(s)

Lattice ice40up5k

yosys, nextpnr-ice40, icepack

iCEBreaker, Fomu

Lattice ECP5

yosys, nextpnr-ecp5, ecppack

OrangeCrab, ULX3S

Lattice Nexus

yosys, nextpnr-nexus, prjoxide

Crosslink NX Eval Board

Xilinx XC7 series

yosys, vpr, fasm2bits (SymbiFlow)

Arty A7-35T

Fig. 4. Open source tools for supported FPGAs.

We also use this as an opportunity to deeply understand data
flow through the kernel.

D. Identify opportunities for CFU acceleration

For an example, the CONV_2D kernel has the following
computation in its innermost loop:

acc += filter_val x

(input_val + input_offset);

This doesn’t appear at first to be a candidate for a custom
instruction because it requires 4 operands when consider-
ing acc’s previous value as an input as well. However,
input_offset isloop-invariant, so it can be moved into the
CFU before the loop nest is entered. acc as well can be stored
in the CFU. We will then have four custom instructions: one to
copy input_offset into the CFU; one to reset acc to zero;
the main instruction with filter_val and input_val
as operands, using the stored value of input_offset to
compute the value added into acc; and finally an instruction
to read the value of acc out of the CFU.

From here, making a 4x SIMD version of the CFU is a
small step, giving another significant speedup.

A key point is that we are tailoring the CPU + CFU for just
a single ML model. Thus, we don’t need to build a general
CFU that can accelerate all TensorFlow operators, or even all
convolutions. We only need it to accelerate the operators and
parameterizations that occur in our model.

V. SUPPORTED FPGAS AND TOOLCHAINS

Figure 4 shows supported FPGA families, which open
source tools are used for each family, and a non-exhaustive
list of example FPGA boards.

In some cases the user has a choice of using vendor or
open source tools. Because CFU Playground uses the LiteX
build system, whichever toolchain is the default for a particular
board with LiteX is also the default for CFU Playground. For
example, when targeting a board with the ice40up5k FPGA,
the open source tools are default. But for Xilinx XC7-based
boards, the vendor tool (Vivado) is default; open source tools
can be chosen by specifying a configuration option.

CFU Playground should work with Intel FPGAs and in fact
any vendor’s FPGAs, as long as the FPGA and board are
supported in LiteX. We simply haven’t had a chance to test
with any FPGAs except those listed in Figure 4. Also, other
FPGAs would require the use of vendor tools.

VI. BENEFITS OF BEING OPEN SOURCE

All TP and software used in CFU Playground is open
sourced and licensed permissively — from the open RISC-
V ISA that allows new instructions in the custom opcode
space, to the VexRiscv soft core implementation and the LiteX
system-on-chip IP, to the open source Symbiflow FPGA syn-
thesis/place/route tools (vendor tools can be used instead if the
user wishes), Renode and Verilator simulation environments,
and TensorFlow Lite kernel libraries. This means that the
CPU plus CFU plus kernel libraries that the user develops
are not tied to any particular FPGA vendor; there are no
licensing restrictions or fees; and there is no dependence
on any black box proprietary tools. If project requirements
change, the design can be easily moved to a different FPGA
from a different vendor. Similarly in the case of a sourcing
issue, the design can be moved to any similar available FPGA.

Another benefit of the fully open source stack all the way
down to CPU RTL is the transparency that it provides. Since
all parts can be inspected, you are not in the position of
needing to place blind trust in either software or silicon
providers. This is a core principle of the Betrusted system

[6].

VII. EXAMPLES

A. MobileNet V2 Acceleration on Arty

Profiling of MobileNetV2 (MNV2) on the Arty board
showed that 63% of the cycles were consumed by CONV_2D
1x1 layers, so our focus was accelerating that particular
operator.

In the computation for a Ix1 convolution, for each x,y
spatial coordinate, an input vector (the input tensor’s column at
x,y with length determined by the number of input channels)
is multiplied by a matrix to produce an output vector (the
output tensor’s column at x,y with length equal to the number
of output channels). The matrix contains the filter weights,
has size input channels x output channels, and is the same
for every x,y.

We started with a simple 4-way parallel multiply-
accumulate CFU. From there, the CFU grew incrementally
over many steps. The final incarnation of the CFU (Figure 5)
stored the filter weights and current input vector internally,
and had an internal sequencer to compute a complete output
column from an input column. This allowed each value trans-
ferred into the CFU storage to be used multiple times. Also,
the input and output vectors were double buffered: while one
output vector was being computed, the previously-computed

1. Load filter values
3. Stream input values

Input Buffer

Filter Values ('weights")
Memory (4x 32 bits wide x 512 deep) (4x 32 bits 512 deep)

its wide x

Fiter fe=|{= ==~ HEIE A

Values * N B >
Input Queue >
Input
Tensor)
o Multiply-Accumulate
T 1 | 1 | Wb
\ Il Il Il |

N/

‘ ‘ Post processors

Sequencer
o
~

Output 2. Set up sequencer
Tensor

-. Output Queue | [. buffer]

1x1xN Conv2D Accelerator

4, Stream output values

Fig. 5. Final CFU for MobileNet V2.

output vector was being copied out, and the next input vector
was being copied in.

This MNV2-specialized CFU achieved a 55x speedup for
CONV_2D over the software implementation, although it
required fairly complex hardware design. We implemented this
CFU using nMigen [5], an open source Python-based toolkit
for RTL design, and this helped us to manage that complexity.

B. Keyword Spotting Acceleration on Fomu

The Fomu [7] FPGA board is roughly the size of a penny,
and fits inside a USB slot. It combines an ICE40UP5k FPGA
(with 5280 logic cells and 128kB of on-chip RAM) with
a 2MB flash memory. At first look it seemed it would be
impossible to fit CFU Playground on such limited resources.

With the limited FPGA resources, even the basic VexRiscv
configuration did not fit. So we started with the “minimal”
configuration, which has no caches, no hardware multiplier,
and no branch prediction or bypassing. This fit, but was very
slow.

Thus our first step was optimizing the VexRiscv configura-
tion, taking out what wasn’t needed and adding what gave the
most benefit. After many iterations, we removed some error
checking (e.g. for misaligned addresses) and some unneeded
system reset functionality. This made room for a single-cycle
hard multiplier (but not a hard divider) and small caches, with
500 logic cells left over for a CFU.

On the software side, the CFU Playground binary could not
fit in 128kB, especially considering that much of this RAM is
needed for working data. We modified the linker script to place
the code (.text section) and read-only data (.rodata section
— mostly weights from the ML models) into flash memory.
However, reading code and data from flash is much slower
than from RAM. Our solution was to move only the model
weights and select subroutines into fast RAM memory.

While profiling the memory system, we realized that flash
ROM accesses were slower than they should be. This pointed
to some potential improvements in the SPI flash interface that
we were able to implement.

Finally, we considered how to achieve further speed by
adding custom instructions. The run time was dominated by
convolution, and we found we had created sufficient room
to add a 4-way parallel multiply-accumulate. This CFU was
written in a subset of SystemVerilog that Yosys understands.

Depthwise convolution was the second runtime contributor.
It has a different access pattern and therefore cannot use
the 4-way multiply-accumulate that we built for convolution.
Ideally, we could build separate CFU gateware for depthwise
convolution, but there were no remaining resources to extend
the CFU this way. After some examination we realized we
could use just one lane of the 4-way multiply-accumulate CFU
in depthwise convolution to achieve a modest, but still positive,
speedup.

Overall, keyword spotting inference performance improved
by a factor of 75x. The time for one inference was reduced
from 2.5 minutes to 2 seconds. Only 3x of the speedup was
directly attributable to the small CFU that was added. The
other 25x was derived from optimizing the CPU configuration,
software, memory accesses, and system interfaces/drivers. This
illustrates the usefulness of CFU Playground’s profile-analyze-
improve loop for full-system optimization.

VIII. UPDATES AND STATUS

o Done: We have completed the process of open-sourcing
the repository.

e Done: We have generalized CFU Playground to support
multiple FPGA families and boards, in particular, smaller
lower-cost options.

o In progress: We are shifting to using Conda packaging
to download all needed open source tools, rather than
requiring the user to install them.

o Future: Make it easy to fine-tune the CPU configuration
for each individual project. Currently the user can only
choose from among a small number of pre-generated
VexRiscv configurations.

REFERENCES

[1] R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger,
1. Nappier, M. Natraj, S. Regev, R. Rhodes, T. Wang, and P. Warden,
“TensorFlow Lite Micro: Embedded Machine Learning on TinyML
Systems,” 2020. [Online]. Available: https://arxiv.org/abs/2010.08678

[2] Wikipedia Authors. (2021) Neural architecture search. [Online].
Available: https://en.wikipedia.org/wiki/Neural_architecture_search

[3] C. Papon. (2021) VexRiscv: An FPGA friendly 32 bit RISC-V
CPU implementation. [Online]. Available: https://github.com/SpinalHDL/
VexRiscv

[4] F. Kermarrec and Others. (2021) Litex wiki.
https://github.com/enjoy-digital/litex/wiki

[5] whitequark. (2021) A refreshed Python toolbox for building complex
digital hardware. [Online]. Available: https://github.com/nmigen/nmigen

[6] A. ’bunnie’ Huang and Betrusted developers. (2021) Betrusted: A
security enclave for humans. [Online]. Available: https://betrusted.io

[7]1 (2019) I'm Fomu, an FPGA in your USB port! [Online]. Available:
https:/fomu.im

[Online]. Available:

https://arxiv.org/abs/2010.08678
https://en.wikipedia.org/wiki/Neural_architecture_search
https://github.com/SpinalHDL/VexRiscv
https://github.com/SpinalHDL/VexRiscv
https://github.com/enjoy-digital/litex/wiki
https://github.com/nmigen/nmigen
https://betrusted.io
https://fomu.im

	Introduction
	Customizing the Soft CPU
	Custom Instructions

	The rest of the pieces
	Development Cycle
	Set up
	Set a baseline
	Simplify and Specialize
	Identify opportunities for CFU acceleration

	Supported FPGAs and toolchains
	Benefits of Being Open Source
	Examples
	MobileNet V2 Acceleration on Arty
	Keyword Spotting Acceleration on Fomu

	Updates and Status
	References

