The Open-Source Bluespec **bsc** *Compiler and Reusable Example Designs*

Julie Schwartz, Niraj N.Sharma, Darius Rad, Ken Takusagawa, Joe Stoy & Rishiyur S. Nikhil

> WOSET 2021: Workshop on Open-Source EDA Tools November 4, 2021

Overview

BSV/BH compared with others: semantics (behavioral model)

BSV/BH compared with others:

modern Programming Language features

An example fragment of BSV, for flavor

Concurrent bubblesort of an array of registers

Adjacent rules (updating common registers) arbitrated automatically due to atomic transaction semantics

Full example (including simpler lead-up examples without parameterization and generators):
https://github.com/BSVLang/Main.git
Tutorials/BSV_Training/Example_Programs/Eg03e_Bubblesort/src_BSV/Bubblesort.bsv

The true power of *rules* is revealed as we scale atomicity across parameterized module boundaries. The true power of Haskell features is revealed as we scale to large, parameterized designs.

BSV/BH libraries: a sampling

- Format objects

Most of this is written in BSV

- Monadic plumbing

- Configuration bus

BSV/BH and bsc timeline and maturity

Significant example designs (open source)

The paper briefly describes and provides links for a number of significant, open-source designs (by no means an exhaustive list). All of them run on FPGAs

- Complete Linux-capable RISC-V system running on Xilinx VCU118 boards and Amazon AWS ("AW-Steria_RISCV_Virtio"). [**Demo** and next slides.]
- Several RISC-V CPUs from Bluespec, Inc. and MIT (Piccolo, Flute, Toooba/RISCY-OOO). Piccolo and Flute are highly parameterized on the RISC-V ISA options, generating a range of CPUs from small, embedded to powerful, Linux-capable.
- These Bluespec CPU repositories also include several variants of cache systems, Debug Modules, Interrupt Controllers, Timer interruptors, AXI4 and AXI4-Lite interfaces, fabrics and components, etc.
- Security-enhanced CPU designs (MIPS and RISC-V) from U. Cambridge.
- "Shakti" RISC-V CPU family from IIT Madras.
- "CONNECT" NoC (network-on-chip) generator from Carnegie Mellon University.
- "BlueCheck" automatic hardware checker modelled on Haskell QuickCheck from U.Cambridge.

Please see paper for open-source repository links for all the above.

Hardware setup for demo

Xilinx VCU118 inside a Node Pro PCIe cage with PCIe connected via Thunderbolt cable to NUC

("hardware/FPGA side")

Thunderbolt cable carrying PCIe

Intel NUC mini-server running Debian Linux

("host side")

A significant open-source example design (live demo)

- Runs in simulation and on Xilinx VCU118 and Amazon AWS; boots FreeBSD (also Linux capable). Virtio support provides networking and block-storage to FreeBSD/Linux on RISC-V.
- RISC-V CPU on FPGA-side is controllable from GDB on host-side.

AWSteria_RISCV_Virtio (SW + HW system)

Entire hardware-side, and much of AWSteria_Infra is written in BSV. Host-side code is in C.

Flute CPU, RISC-V components (Debug Module, PLIC, Timer, SW intr), AXI: https://github.com/bluespec/Flute

AWSteria_RISCV_Virtio: https://github.com/GaloisInc/BESSPIN-CloudGFE/tree/rsn3/AWSteria_RISCV_Virtio (rsn3 branch; will move to main branch) AWSteria_Infra: https://github.com/bluespec/AWSteria_Infra

WOSET 2021

Conclusion

We invite the community to join us in using BSV/BH, and in continued development of the bsc compiler and tools.

Key links:

- bsc compiler source code (written in Haskell), including libraries: https://github.com/B-Lang-org/bsc
- Additional contributed libraries: https://github.com/B-Lang-org/bsc-contrib
- Bluespec Development Workstation (GUI): https://github.com/B-Lang-org/bdw
- Tutorial materials. Comprehensive textbook(s) are in progress. Meanwhile, the following links are useful:
 - Bluespec, Inc.'s training materials https://github.com/BSVLang/Main: working examples, slides, and a PDF copy of the "BSV by Example" book.
 - ICFP 2020 tutorial: https://github.com/rsnikhil/ICFP2020_Bluespec_Tutorial
 - Video recording of ICFP 2020 tutorial: https://www.youtube.com/watch?v=JCxE3JQAXY0

Please see paper for open-source repository links for the rest of the mentioned artefacts.

Thank you!