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Abstract—The bsc compiler, which has been in commercial use
for two decades, was released as a free and open-source artefact in
January 2020. Here we describe briefly bsc and its flows, available
tutorial materials, and several reusable open-source designs using
bsc, many of them centered on RISC-V (from embedded to Linux-
capable CPUs and systems), all FPGA-ready.

Index Terms—EDA, BSV, BH, HDL, HLHDL, RISC-V

I. INTRODUCTION

The bsc compiler and its libraries have been developed
for commercial use since 2000. It was a licensed product
from Bluespec, Inc. for two decades, although academic and
research licenses have always been available at no cost. A
couple of top-ten semiconductor vendors and one major search
company have used bsc to design complex IPs in state-of-
the-art ASIC SoCs. It has been used by many companies for
FPGA-based prototyping, and in many universities for research
on architecture and complex IPs.

In January 2020, Bluespec, Inc. released the compiler,
libraries, and a GUI as free and open-source artefacts under
the BSD 3 Clause license. These are available at:

https://github.com/B-Lang-org/bsc
https://github.com/B-Lang-org/bsc-contrib
https://github.com/B-Lang-org/bdw

The bsc compiler takes as input designs written in the
HLHDLSs (High Level Hardware Description Languages) BSV
and BH (described below), and generates vanilla, synthesizable
Verilog, which is then processed by standard RTL tools
(simulation, synthesis, formal analysis, etc.).

In this paper, we describe briefly BSV and BH, bsc and
its flows, and several free and open-source designs written in
BSV/BH. Many of the designs are RISC-V artefacts (CPUs,
IPs and systems). All are highy reusable and run on FPGAs.

II. BACKGROUND ON BSV AND BH, HIGH LEVEL
HARDWARE DESIGN LANGUAGES

BSV and BH originated in research at MIT in the
1990s [[10], when James Hoe and Arvind established the
feasibility of compiling high quality Verilog from behavior
expressed as concurrent atomic transactions. This is attractive
because it is the behavioral model of choice for formal
specification and analysis of complex concurrent systems (e.g.,
TLA+ [[L1]], Event-B [12], UNITY [7]). Being able to compile
such specs to quality hardware therefore enables an automation
bridge between formal specifications and actual hardware.

Enabling compositional formal verification has always been
a central motivation and feature of BSV/BH (e.g., see MIT’s
Kami project at |https://github.com/mit-plv/kami). Atomic-
transactional semantics also enhances everyday informal rea-
soning about correctness by the practicing engineer.

In 2000, Lennart Augustsson implemented these ideas in
a new language, BH (for Bluespec Haskell), which uses
Haskell’s syntax and semantics, including its type system
with polymorphism and type classes, monads and higher-order
functions, resulting in powerful static elaboration and very
strong type abstraction and type-checking [2], [[14].

In 2004-2005 we created BSV, which was just a new,
SystemVerilog-ish front end syntax [6]], but which otherwise
retained all the Haskell-like expressive power of BH.

In 2005 we introduced support for multiple clock and reset
domains. Strong type-checking ensures the impossibility of
mixing clocks and reset with ordinary signals. Static checking
by bsc enforces proper clock domain discipline.

A. Comparison with RTL, Chisel and other HDLs, and HLS

BSV/BH, VHDL, Verilog, SystemVerilog and Chisel [3]
are all HDLs: designers explicitly describe architecture and
microarchitecture. In this, they are all fundamentally different
from so-called “HLS” (High Level Synthesis) [9], where tools
synthesize architectures and microarchitectures, possibly with
high-level steering by the designer. This doesn’t mean HDLs
must be low-level: powerful abstraction and composition
mechanisms allow describing high-level, parameterized archi-
tectures just as fluently as low-level microarchitectures [14].
BSV/BH gets this by mimicking Haskell; Chisel gets this by
embedding in Scala.

BSV and BH also differ from languages like Lava [5]] which
focus on powerful, correct composition mechanisms for circuit
structure and not on behavior.

As with other HDLs that directly express architecture,
BSV/BH is general-purpose, and not targeted to any particular
application domain.

Perhaps the most fundamental, broad-reaching and signif-
icant difference between BSV/BH and all other HDLs is its
choice of concurrent atomic transactions as its central (and
only) way to express behavior.

III. BSV/BH DESIGNS, THE bsc COMPILER AND FLOWS

As in other HDLs, a BSV/BH design is a hierarchy of
module instantiations, albeit with much more powerful static
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elaboration compared to other HDLs because of the power of
language semantics inspired by Haskell.

Unlike other HDLs, where behaviour is expressed as syn-
chronous clocked processes, in BSV/BH it is expressed as
rules which are globally atomic transactions.

Unlike other HDLs, where inter-module communication is
based on input and output signal buses, in BSV/BH it is
expressed using methods which are invoked from rules (or
transitively from other methods). Methods extend atomic-
transaction semantics of rules across module boundaries, i.e.,
atomicity composes as designs scale. A module’s interface
methods constitute a first-class interface type,

As in SystemVerilog, modules, interfaces and types can be
partitioned into source files called packages. bsc takes BSV
or BH source files (packages) and produces synthesizable
Verilog, i.e., immediately acceptable to existing FPGA and
ASIC synthesis tools. Separate package compilation by bsc
enables fast incremental rebuilds in large systems.

bsc-generated Verilog runs on most well-known simulators,
both open-source (Icarus, Verilator, CVC etc.) and commercial
(Synopsys, Cadence, Mentor, Xilinx). It can be synthesized by
most well-known synthesis tools (Design Compiler, Vivado,
Quartus and those of other FPGA vendors).

A. Interoperability with existing RTL and with C

Verilog generated by bsc from BSV/BH can of course be in-
stantiated in existing VHDL/Verilog/SystemVerilog modules.
In the opposite direction, BSV/BH has import mechanisms to
instantiate existing Verilog modules inside BSV/BH designs.
Thus, one can freely mix and match BSV/BH with existing
RTL in existing flows. For simulation, BSV/BH also has DPI
mechanisms to import arbitrary C code.

B. bsc internals and optional GUI

Although BSV/BH borrows semantic and type ideas heavily
from Haskell, it is not a DSL inside an existing Haskell
compiler or system. bsc is a completely standalone, purpose-
built compiler (that just happens to be written in Haskell).
A central difference between bsc and other HDL compilers
(such as for Verilator and Chisel) is rule scheduling, i.e.,
production of synchronous, clocked Verilog with control logic
that preserves the atomic-transaction behavioral semantics. bsc
uses open-source SAT solvers to analyze relationships between
rule conditions, which results in optimized control logic.

In addition to Verilog, bsc can also generate C code and
compile that into a standalone, executable simulator (Bluesim)
that is perfectly cycle-accurate with RTL simulation and can
generate VCD files.

Compiler object files can be queried and controlled from an
API. This API has a Tcl binding (bluetcl); in fact Bluesim is
just a Tcl wrapper exploiting this.

Although all BSV/BH development can be done from the
command-line, Bluespec Development Workstation (BDW)
(https://github.com/B-Lang-org/bdw) provides a GUI from
which one can explore source hierarchy, compile, build and
run simulations, and observe waveforms on an attached VCD

viewer such as GtkWave. BDW can configure GtkWave to
show waveforms at BSV source-level types (enums, structs,
unions, vectors) instead of the flat signal buses of Verilog.
BDW presents graphical displays of rule schedules to help
understand how atomic-transaction rules have been mapped
into clocked logic by bsc.

IV. TUTORIALS AND BOOKS

A variety of free and open-source tutorial resources are
available for learning BSV/BH and how to use the tools.
https://github.com/BSVLang/Main| contains Bluespec, Inc.’s
free and open training course for BSV/BH, as well as a free
PDF copy of the BSV by Example book [15].

Links to tutorial materials and a video recording for the
tutorial “Designing Hardware Systems and Accelerators with
Open-Source BH” at the Intl. Conf. on Functional Program-
ming 2020 are given in reference [16].

MIT (USA), Carnegie Mellon U. (USA), U. Cambridge
(UK), Seoul National U. (S. Korea), Indian Institute of Tech-
nology Madras (India) and T. U. Darmstadt (Germany) have
run courses on BSV for their students for many years, at both
the undergraduate and graduate level; some of their materials
are available on their respective public web sites.

The open-source designs listed in the next section are also
a rich source of examples for people learning BSV/BH.

V. EXAMPLE DESIGNS IN BSV/BH

Over the years, BSV and BH have been used by a number
of companies for complex IP subsystems in product ASIC
SoCs. These include a many-to-many high-speed video data
mover for set-top boxes, a display controller for handhelds,
and an Al chip accelerator. Many companies exploited BSV’s
powerful abstraction mechanisms and type systems for rapid
prototyping and modeling, on FPGAs, of future ASIC designs.
While these examples demonstrate the power, scalability and
maturity of BSV/BH and bsc, they are not available in open-
source form.

However, many designs from Bluespec, Inc. and from
leading universities are available under free and open-source
licenses; a sampling of these are described next. Most of them
are fairly large and may be of interest as tools in their own
right. Although written in BSV, bsc compiles them to Verilog
and they can be used as IPs in designs that are otherwise
designed with RTL (see “interoperability” above).

A. Open-source RISC-V CPUs (Bluespec, Inc.)

Bluespec, Inc. has open-sourced a range of RISC-V proces-
sor designs, ranging from very small (for embedded and mi-
crocontroller applications) to very large and complex. They are
all available at https://github.com/bluespec, under the Apache
License, Version 2.0.

e Piccolo: 3-stage in-order pipeline, separate I- and D-
channels.

o Flute: 5-stage in-order pipeline with branch prediction,
separate I- and D- channels.
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o Toooba: a packaging of MIT’s RISCY-OOO design [20]:
out-of-order, superscalar, deeply pipelined, branch predic-
tion, separate cache-coherent I- and D- channels, multi-
core, cache-coherence.

Piccolo and Flute are parameterized to build any combination
of the standard RISC-V unprivileged ISA choices: RV32 or
RV64, I (integer), M (integer multiply/divide), A (atomics), C
(16-bit compressed instructions) and FD (single- and double-
precision IEEE floating point). They can optionally be config-
ured for Privileged ISA levels M (machine), S (Supervisor) and
U (User). For S, they support standard Sv32 and Sv39 Virtual
Memory schemes. Thus, they are both Linux-capable. In
addition, the CPUs are parameterized for a simple-to-complex
range of memory systems: TCM (tightly-coupled memory),
L1-only (writeback or writethrough), and cache coherent I-L.1
+ D-L1 + shared L2.

MIT’s RISCY-OOO CPU inside Toooba is parameterized
for number of cores, superscalarity, degree of speculation, size
and organization of reorder buffers and branch prediction, size
and organization of MMUs and caches, and more.

B. Open-source IPs for RISC-V systems (Bluespec, Inc.)

The following are available at https://github.com/bluespec,
under the Apache License, Version 2.0:

o Debug Module: RISC-V spec’d hardware module adja-
cent to a RISC-V CPU enabling remote GDB control.

o PLIC (Platform Level Interrupt Controller): RISC-V
spec’d interrupt controller arbitrating interrupts from ex-
ternal devices to one or more RISC-V cores.

o AXI4 and AXI4 Lite interfaces and interconnects.

o The memory systems described in the previous section
(Tightly Coupled Memory, L1 and L2 caches with or
without cache coherence) can also be reused as IPs in
other RISC-V designs.

C. AWSteria_Infra and Connectal for host+ FPGA Systems

AWSteria_Infra is a system written in BSV to simplify
design of applications comprising software on a host computer
communicating with hardware on an FPGA. Fig. [T] shows the
structure of AWSteria_Infra and an application. C code on the
host, and BSV code on the FPGA provide simple interfaces to
the application (AXI4 and AXI4 Lite). BSV code on the FPGA
also provides simple interfaces (AXI4) to DDR memory on
the FPGA board. These interfaces are similar to the so-called
“shell” provided in Amazon’s aws-fpga development kits [/1]],
but are available across a wider set of platforms.

AWSteria_Infra implementations exist for RTL simulation
(using TCP/IP for communication), and for Xilinx VCU118
and AWS F1 FPGA systems (both use PCle for communi-
cation). More platforms will be supported in the future. It is
available at https://github.com/bluespec/ AW Steria_Infra under
the Apache License, Version 2.0.

Connectal, also written in BSV, has the same overall
purpose, but provides a “remote method” model for host-
FPGA communication, in both directions. It supports a

Architecture of a HW/SW app using AWSteria_Infra

App (SW + HW)

Host-side Hardware-side  (FPGA or HDL simulation)

App App
host-side code hardware-side design (RTL/ BSV/ Chisel/ HLS/ ...)
(calling C API below) (with HW interfaces below)

r/w (AX14)] [r/w (AXI4 Lite)] | [AX14 S|[AXI4 Lite S| [AX14 M|[AXI14 M]

APIs:  AWSteria_host_lib.h AWSteria_HW_EMPTY.bsv / mkAWSteria_HW_Empty.v

r/w (AX14)] [r/w (AXI4 Lite)] [AXI4 M[[AXI4 Lite M| [AXI4 S][AXI4S] Clocks Misc.
and

Resets

AWSteria_Infra

]
DDR A || DDR B

Fig. 1. AWSteria_Infra for SW+FPGA systems.

wider set of platforms and is available at https://github.com/
cambridgehackers/connectal, under the MIT License.

D. AWSteria-RISCV-Virtio (Bluespec, Inc.)

AWSteria-RISCV-Virtio is a RISC-V system running on
FPGAs that boots multi-user FreeBSD (it is Linux-capable
as well, but this has not been tested yet). It has access to
networks and block-storage devices, even on FPGA boards in
the cloud which do not have (accessible) on-board network
or storage devices. It accomplishes this using “Virtio” [13],
an open standard originally developed for virtualization to
provide portable device services for guest OSes across multiple
host hypervisors.

Fig. |2| shows components in AWSteria-RISCV-Virtio. The
FPGA-side is a RISC-V system with a BSV CPU (Flute,
Toooba), Debug Module, PLIC (see above), DDR memory,
a UART, and MMIO-to-host access for Virtio. Host-side code
provides console TTY I/O for the RISC-V CPU, GDB control
of the RISC-V CPU, and Virtio device services (networking,
block storage, etc.) to the OS on the RISC-V CPU. Host-side
Virtio devices are provided by TinyEMU, Fabrice Bellard’s
open-source system emulator for RISC-V [4] (a smaller and
simpler version of QEMU). The host has cache-coherent
access to FPGA DDRs, required for Virtio.

AWSteria_RISCV_Virtio (SW + HW system)

Host-side Hardware-side (FPGA or HDL simulation)
General control/status SoC RISC-V p\a(fﬁ!'_rlrﬁewe\
e Debug CPU interrupt controller
erminail €3 RISC-V CPU console TTY Module . E
Virtio device emulation I-, D-caches, MMUs -
UART SW interrupts
ﬂ 3 gdbstub
MMIO
Trace/Tandem Verification Boot ROM
recording/analysis
riw (AX14)| [r/w (AXI4 Lite) AXI4 S][Axi4 Lite 5| [Axi4 M|[Axia M|
| I

1

[riw (AX14)| [riw (AX14 Lite)]  |AXI4 M[AXI4 Lite M| [AXI4 S |[AXI4S | Clocks Misc.
1 1 A and

Resets

AWSteria_lInfra

1 [ oora | oore

Fig. 2. AWSteria_RISCV_Virtio.
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The system is built atop AWSteria_Infra (Sec. and
hence is immediately portable to any supported platform
(currently RTL simulation, Amazon AWS FI, Xilinx
VCU118 boards). AWSteria-RISCV-Virtio is available
at https://github.com/GaloisInc/BESSPIN-CloudGFE/
tree/rsn3/AWSteria_RISCV_Virtio (will move soon to
https://github.com/GaloisInc/BESSPIN-CloudGFE).

E. Secure RISC-V (U. Cambridge)

For a number of years Cambridge has been researching
CHERI: Capability Hardware Enhanced RISC Instructions.
Instructions and memory systems are enhanced with “capa-
bilities” that enable secure computing, i.e., eliminate secu-
rity vulnerabilities in traditional designs [[19]. The designs
are written in BSV and are available at https://github.com/
CTSRD-CHERI|under a license based on Apache License 2.0.

FE Shakti RISC-V Processors (IIT Madras)

The Shakti initiative at Indian Institute of Technology
Madras is building a family of production-grade processors,
SoCs, development boards and software platforms around
RISC-V. The processors and SoCs are written in BSV, and
are available at https://gitlab.com/shaktiproject under a BSD
3-Clause License.

G. Network-on-a-Chip Generator (Carnegie Mellon U.)

Papamichael and Hoe at CMU developed CONNECT, a
NoC generator for FPGA-tuned multi-node NoCs of arbitrary
topology [17]. This was the basis of their award-winning
entry in the MEMOCODE 2011 Hardware/Software Codesign
contest. This has recently been open-sourced at https://github.
com/crossroadsfpga/connect| with a BSD 3 Clause license.

H. BlueCheck Generic Hardware Testbench (U. Cambridge)

BlueCheck is an implementation of Haskell’s
QuickCheck [8] in BSV, exploiting BSV’s inclusion of
the same Haskell features used by QuickCheck: polymorphic
types and type classes, monads and higher-order functions.
Like QuickCheck, it has:

o automatic test-sequence generation from interface types,

with support to override defaults;

o iterative deepening: generating longer and longer test

sequences;

« shrinking: automatically shortening test sequences when

a failure is found;
« full synthesizability (being written in BSV): the testbench
can run at speed on FPGA with a DUT.
It is available at jhttps://github.com/CTSRD-CHERI/bluecheck
under the BERI Hardware-Software License, Version 1.0.
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