
Open-Source Formal Verification for Chisel
Kevin Laeufer, Jonathan Bachrach and Koushik Sen

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA
Email: {laeufer, jrb, ksen}@eecs.berkeley.edu

Abstract—Chisel is a Scala embedded hardware construction
language allowing designers to take advantage of a general
purpose programming language to generate digital circuit de-
scriptions. From the beginning Chisel has featured integration
with RTL simulators in order to allow designers to unit test their
designs. We recently added support for easy formal verification
of Chisel designs. Our implementation will be available to all
users of the next Chisel and chiseltest releases. The source code
is hosted on github and published under a permissive Apache 2
license.

I. INTRODUCTION

While working on the RTL level description of a new
circuit, designers need to quickly test their design in order
to iteratively improve it. Extensive testing is also a common
requirement before sending a design to be fabricated as bugs
discovered after ASIC fabrication can be costly or even
impossible to fix. The most common approach to testing RTL
is to write a test bench program that interacts with a simulation
of the design. Errors are found through manual waveform
inspection or assertions in the design or the test bench.

An alternative to exercising the circuit description with a
set of concrete inputs is to symbolically explore the circuit
execution for any inputs for a limited number of cycles. This
technique is called bounded model checking [1] and works by
unrolling the circuit for k cycles and then asking a SAT [2]
or SMT [3] solver whether there exists a set of inputs and
starting states for the memories and registers in the design, for
which an assertion is violated. If the solver returns a satisfying
assignment to this query, we obtain a counter example that
can be expressed as a test bench that initialized the state to
concrete values from the solver and then drives the inputs for
k cycles with the inputs obtained from the solver. If the solver
returns that there is no such assignment, we get a guarantee
that our circuit will not hit any assertion violation for the first
k cycles of its execution.

There has been a long tradition of open-source formal
verification systems from the academic community [4], [5],
[6]. However, because of the traditional academic incentive
structure, these research systems were hard to use or did not
support enough features of the RTL design language to be
widely used by a community of open source RTL designers.
This changed with the introduction of the yosys [7] tool which
has become the de facto standard for processing Verilog for
synthesis or formal verification. Yosys allows academics to
focus on developing model checkers for the simple btor2 [8]
or aiger [9] formats without having to worry about supporting
the much more complicated Verilog standard. The open-source
SymbiYosys [10] tool wraps yosys as well as various formal
verification engines in order to allow users to verify their

class Quiz15 extends Module {
/* [...] I/O definitions */
val mem = SyncReadMem(256, UInt(32.W), WriteFirst)
when(iWrite) { mem.write(iWAddr, iData) }
oData := mem.read(iRAddr, iRead)

when(past(iWrite && iRead &&
iWAddr === iRAddr)) {

verification.assert(oData === past(iData))
}

}

class ZipCpuQuizzes extends AnyFlatSpec
with ChiselScalatestTester with Formal {
"Quiz15" should "pass with WriteFirst" in {
verify(new Quiz15, Seq(BoundedCheck(5)))

}
}

cycle #0: read and write
issued from/to address 0

cycle #1: read data is 1,
but write data was 0

1
1

0

0
0

1 (≠0)

Fig. 1. This example verifies that when a Chisel memory with synchronous
read port and WriteFirst behavior has a read and a write access to the
same address, the new value will be returned. The check fails if WriteFirst
is substituted with ReadFirst or Undefined (Section IV). It is based on
a Verilog example from a popular blog. In the Chisel version, the assertion
is automatically delayed until at least one cycle after reset, when there are
valid past values available (Section VI). A bounded model check is executed
by the verify command, which is called from a standard Scala unit test
(Section III). When the check fails, the failing inputs and starting states are
replayed on a simulator, resulting in a waveform file that is identical to the
output we would get from a dynamic verification run. However, since we
used bounded model checking to find the failing trace, it will be as short
as possible. In our example, two cycles after reset are needed to fail the
property. The first cycle contains the read and write requests and the second
cycle observes the arbitrary result on the read port if we set the memory
behavior to Undefined for read/write conflicts. The included screenshot
was obtained with the open-source GTKWave waveform viewer.

designs. All a user has to provide are the Verilog sources
of their design including assertions and assumptions as well
as a small configuration script. SymbiYosys translates any
failing traces it discovers into Verilog test benches and VCD
waveform dumps for the user to inspect 1.

In this paper we describe our approach to providing Chisel
users with an easy way to formally verify their designs. We
adapt many good ideas from yosys and build several new
convenience features on top of them, taking advantage of the
existing compiler infrastructure for Chisel.

1With the open-source GHDL plugin, yosys now also supports formally
verifying VHDL circuits.

https://zipcpu.com/answer/2021/07/03/fv-answer15.html

II. THE CHISEL HARDWARE CONSTRUCTION LANGUAGE

Chisel is a modern hardware construction language embed-
ded in the general purpose programming language Scala [11].
It allows designers to effectively write Scala programs that
generate hardware descriptions at the register transfer level
(RTL). One popular open-source application is the powerful
RocketChip system on chip generator [12].

The user-facing API of Chisel is a Scala library with some
syntactic sugar that allows the user to generate RTL designs.
These designs then have to be converted into a format that
is understood by simulators as well as FPGA and ASIC
synthesis tools. The lowering is done by the FIRRTL compiler
which converts a high-level intermediate representation (IR)
into a normalized structural representation [13]. The low-level
representation is then exported into a subset of Verilog that
was chosen as a common subset supported by the majority of
backend tools.

Besides serving as a convenient way to lower Chisel circuits
into Verilog, the FIRRTL IR and accompanying compiler
infrastructure also makes it easy to add circuit analysis and
instrumentation passes. The Chisel frontend makes it possible
to attach annotations (i.e., meta-data) to arbitrary signals in
the circuit and to schedule compiler passes to be executed
that are free to consume the annotations and make changes to
the circuit. We will make use of these facilities throughout the
paper.

III. OUR FORMAL VERIFICATION FLOW

Before we dive into some of the details of our imple-
mentation we want to present the workflow that we imagine
and illustrate how easy it can be to get started with formal
verification of a Chisel circuit 2. The recommended way to
start a Chisel project is to use the open-source Chisel template
repository 3. The resulting Scala project automatically includes
dependencies on the Chisel and the chiseltest libraries which
will be downloaded by the Scala build tool.

The template contains an example of using the chiseltest
library to test a greatest common denominator (GCD) circuit
in simulation. This test can be executed through a Scala
IDE or from a shell with the sbt test command. In or-
der to turn this test into a formal check, we just need to
substitute the test(new DecoupledGcd(16)) command with
verify(new DecoupledGcd(16), as well as provide the type
of verification job as BoundedCheck(10) and extend the testing
class with the Formal trait. If the user now clicks the test
icon again or runs the sbt test command, a formal bounded
check will be executed for ten cycles after reset instead of
a simulation test. The only additional program required is a
copy of the open-source SMT solver Z3 [14].

Initially the check will always pass, no matter which
changes we make to our circuit. Since the GCD circuit

2A scala project with executable examples as well as a Jupyter notebook
are included in the companion repository to this paper: https://github.com/
ekiwi/open-source-formal-verification-for-chisel. The contributions described
in this paper are all part of the upstream firrtl and chiseltest libraries.

3https://github.com/freechipsproject/chisel-template

Gcd.scala fix

Fig. 2. When working in a standard Scala IDE like the open-source IntelliJ
IDEA with the Scala plugin, the user can launch the formal check with the
press of a button. The success or failure will be communicated the same way
as any other unit test. A VCD waveform dump is automatically generated to
help debug failing checks.

contains no assertions, there is nothing to tell the solver if
the circuits misbehaves. In order to actually verify something,
we can add assertions directly to the circuit by using the
Chisel assert statement. The decoupled GCD circuit used as
an example has an input and an output channel as well as
a 1-bit busy register. We expect that while the circuit is busy,
no new input is accepted:

when(busy) {
verification.assert(!input.fire())

}

This assertion will pass because the circuit does indeed fulfil
the property after reset.

We now introduce a small bug by connecting input.ready

to true.B and rerun the test An assertion violation will be
reported one cycle after reset. The user is also presented
with an error message indicating the Scala line number of
the failing assertion. To debug the problem, they can find a
VCD waveform dump in the standard test directory created by
our chiseltest library. Since we replay the test on a concrete
simulator, the error message and VCD will be exactly the same
as if the user was running a simulation test.

A more advanced property we expect to hold is that if the
input and output channels are idle, the busy signal will remain
the same in the next cycle:

when(past(!input.fire() && !output.fire())) {
verification.assert(stable(busy))

}

Here we make use of our past function for temporal properties
which is described in detail in Section VI.

IV. A FORMAL BACKEND FOR FIRRTL

In order to implement the verify command introduced in the
previous section, we need to convert the Chisel circuit into a
format that is understood by open-source model checkers or
SMT solvers. We can do this by using the FIRRTL compiler to
convert the circuit to Verilog and then using yosys to convert
to the model checking formats. While we initially used this
approach, we eventually decided that it would be better to add
a formal backend to the FIRRTL compiler directly. This way
we can avoid the complicated Verilog semantics, model circuit

https://github.com/ekiwi/open-source-formal-verification-for-chisel
https://github.com/ekiwi/open-source-formal-verification-for-chisel
https://github.com/chipsalliance/firrtl
https://github.com/ucb-bar/chisel-testers2
https://github.com/freechipsproject/chisel-template

firrtl compiler
Undefined Memory

Behavior

verify(new Design(), Seq(BoundedCheck(5))

Invalid to Random

Add Reset Assumption

Random to Register

Treadle Simulator

VCD Error Message

Flatten

Transition System

STMLib btor2 Z3 CVC4

formal engines btormc

❌ Counter Example

Safe Past

Part of the FIRRTL compiler Part of the chiseltest library

✅

Fig. 3. The verify command is implemented as part of the chiseltest
library and uses several compiler passes that make up the FIRRTL formal
backend. We hook into the FIRRTL compiler to model undefined behavior
with DefRandom statements and to delay temporal assertions as part of our
safe past construct. We then add reset assumptions, flatten the system, convert
to a formal transition system and then serialize the system to SMTLib or btor2.
We provide bindings to launch various formal engines from chiseltest. If a
counter example is found, we convert the DefRandom nodes in the circuit
to registers before loading the circuit into the treadle simulator to replay the
failure and obtain a simulation quality VCD and error message.

behavior in greater detail and easily replay counter example
traces on our FIRRTL simulator called treadle.

Users want their Chisel designs to be implemented with as
little hardware as possible. In order to allow for efficient im-
plementations, the FIRRTL specification was crafted to allow
some operations to result in arbitrary results. For example,
a wire connected to DontCare or to the result of a division
by zero carries an arbitrary value. Reading from a memory
while the read port is disabled, reading from the same address
that another port is writing to or writing from two memory
ports to the same address all generate an arbitrary value result.
Not all of these behaviors are represented in the generated
Verilog. The compiler is free to substitute arbitrary with (more)
concrete values, like always returning a memory read result
even when the read port is disabled or by assigning a priority
to write operations so that at least one of them will complete.
Thus if we first generate Verilog and then use yosys, we are
only verifying one concrete translation of the design, but there
may be other legal translations that would violate the property.
This is relevant, e.g., in the context of memories when we
use an external SRAM compiler that might try to rely on
the fact that write-write collisions can have arbitrary results
in order to generate better hardware. This is the reason why
we decided to carefully model arbitrary values as part of the
FIRRTL compiler’s new formal backend.

Once the formal engine finds starting states and inputs that
lead to an assertion violation, we need to help the user debug
their design. Since we do not have the large resources of a
major EDA vendor, we would like to reuse as much of the
existing simulator infrastructure as we can. If we can replay
the failing trace on our existing simulator, the VCD waveform

dump and the error reporting will be of the same quality
as when writing a concrete test bench. In order to be able
to replay failures caused by arbitrary values, we carefully
engineered two FIRRTL passes that analyze the circuit and
add wires to detect when a result is arbitrary as well as a
mux to substitute the result with a connection to a DefRandom

node in that case. The new DefRandom construct provides a
named arbitrary value which can change every clock cycle,
very much like a anyseq annotated wire in Verilog. The formal
backend implements DefRandom nodes as inputs that can be
freely chosen by the formal engine. To make DefRandom work
with our simulator we replace the nodes with registers of the
same type that are never updated by the hardware. Instead
we use the software interface to our simulator to update these
registers with the values chosen by the formal engine in each
cycle. Figure 3 shows our compilation flow in more detail.

The btor2 format does not support hierarchical circuits and
we thus always flatten the system by inlining everything into
a single module. In order to ensure that we produce a good
waveform dump, the counter example will be replayed on the
non-inlined circuit. We make use of the built-in annotation
support of the FIRRTL compiler to automatically track name
changes of all registers and memories in the design as they
are inlined. This way we can map initial states found by the
formal engine back to their hierarchical names.

Once the circuit has been flattened, the conversion to a
transition system is fairly straight forward. We implemented
a SMTLib and btor2 encoding that is very similar to the
one pioneered by yosys. We used the FIRRTL specification
to accurately translate FIRRTL expressions to the bit-vector
expression language defined by the SMTLib format [15]. Our
backend supports memory and register initialization using the
same user annotations as the Verilog backend. Multi-clock
support through a clock stuttering pass is work in progress,
for now only circuits with a single clock domain are officially
supported.

V. RESET ASSUMPTIONS

In Chisel, users rarely need to worry about resets. Registers
with reset values are automatically connected to the default
reset and module instances just inherit their reset domain from
their parent. In Verilog, users have to manually ensure that
assertions are only triggered after the circuit was properly
reset. We decided to provide sensible defaults instead. As-
sertion statements are automatically disabled, just like it has
been the case for print and stop statements since the early
days of Chisel. As part of our formal verification support, we
provide a FIRRTL pass that automatically adds a constraint
for the reset of the top level module to be active during the
first cycle of execution. Thus, by default, users do not have to
worry about reset. Their assumptions will only fire after their
circuit has been properly reset and hence we ensure that there
are no false positives. We do provide options for power-users
to write assertions that are active during reset and to disable
reset assumptions or increase the number of reset cycles.

VI. SIMPLE TEMPORAL ASSERTIONS

While a simple assert statement allows us to specify a
property over signals during a single cycle, it is not enough
to express properties that require us to reason about multiple
cycles. The traditional answer to this problem are temporal
assertion languages like SystemVerilog Assertions [16]. How-
ever, these are complex to implement efficiently and as of now
there has not been a successful open-source implementation.
The community around SymbiYosys has instead advocated for
the use of plain assertions with the Verilog past function. This
function returns the previous value of an expression and thus
allows us to write properties that span multiple cycles.

While conceptually simple, the past construct as defined
by the Verlog standard has one major problem: In the first
cycle of the circuit execution, there is no past value and the
past function always returns X. Thus the user has to take
care to keep track of how many cycles have past since the
verification started and only enable assertions once all past
values are valid. This particular pitfall is often the topic of a
popular formal verification quiz.

We made use of some of the unique capabilities offered by
Chisel in order to implement what we consider to be a safer
version of the past function. In the frontend, our past is a
Scala function which creates an appropriate amount of delay
registers in the current clock and reset domain. That alone
provides functionality similar to the Verilog version of past.
We go further by annotating the delay register and asking for
a FIRRTL pass to be run when lowering the design. This pass
looks at a graph of all past delay registers and assertions in
a module. An edge indicates that the input to the assertion or
register is connected to the output if a delay register through
combinatorial logic. We traverse the resulting tree (by design
there can be no cycles) starting at each assertion to find the
longest path of past delay registers in order to determine the
number of cycles the assertion needs to be delayed. Finally
we generate a cycle counter register and use its value to guard
the individual assertions. Since our past function only relies
on synthesizable hardware it can also be used in software and
FPGA based simulation testing [17].

assert(en=[_], predicate=[_])

=

iData

oData

iWrite &
iRead &
...

cycle
>= 1

!reset
&

Fig. 4. The temporal assertion from Figure 1 results in a circuit with two
registers created by the past function: One to delay the condition from the
when statement and the other to delay the input data before it is compared
to the current output data. By default an assertion is only enabled when reset
is inactive and the surrounding when condition is true. Our compiler pass
analyzes the connectivity graph with the result that both the enable condition
as well as the predicate are delayed by a single past register. Thus the assertion
enable signal is automatically extended to include the condition that at least
1 cycle must have past since the last reset. The new enable condition is
derived from a synthesizable, saturating cycle counter which is created by
the compiler pass.

VII. CONCLUSION

We introduced a new formal verification infrastructure for
RTL designs written in Chisel. Since everything is integrated
with our open-source FIRRTL compiler and chiseltest testing
library, this support will be available to all Chisel users. In
order to lower the barrier to entry, we added default reset
assumptions and a safer version of the past function for tem-
poral assertions. We carefully designed the formal backend of
the FIRRTL compiler to model worst-case behaviors from the
FIRRTL specification and to ensure that all counter examples
can be replayed in simulation. We have ported several Verilog
examples to our new Chisel formal verification infrastructure 4

and are looking forward to getting more feedback from our
users.

ACKNOWLEDGMENT
We would like to express our thanks to the members of the Chisel

community for their inspiration and help. In particular we are grateful
to Tom Alcorn, Daniel Kasza, Jack Koenig, Deborah Soung, Chick
Markley, Schuyler Eldridge and Jiuyang Liu. We would also like to
thank Clair Wolf for all she has done to advance the open-source
Verilog ecosystem. Without yosys as an inspiration we would have
never been able to conduct this work. This work was supported in
part by Semiconductor Research Corporation and through NSF grants
CCF-1900968, CCF-1908870, and CNS-1817122. Any opinions,
findings, conclusions, or recommendations in this paper are solely
those of the authors and do not necessarily reflect the position or the
policy of the sponsors. REFERENCES

[1] A. Biere, A. Cimatti et al., “Bounded model checking.” Advances in
Computers, vol. 58, 2003.

[2] J. Marques-Silva, I. Lynce, and S. Malik, “Conflict-Driven Clause
Learning SAT Solvers,” in Handbook of Satisfiability, 2021.

[3] C. Barrett, R. Sebastiani et al., “Satisfiability Modulo Theories,” in
Handbook of Satisfiability, 2008.

[4] K. L. McMillan, “The SMV System,” in Symbolic Model Checking,
1993.

[5] A. Cimatti, E. Clarke et al., “NuSMV: a new symbolic model checker,”
International Journal on Software Tools for Technology Transfer, 2000.

[6] A. Mishchenko et al., “ABC: A System for Sequential Synthesis and
Verification,” URL http://www. eecs. berkeley. edu/alanmi/abc, 2007.

[7] C. Wolf and J. Glaser, “Yosys-a free Verilog synthesis suite,” in
Proceedings of the 21st Austrian Workshop on Microelectronics, 2013.

[8] A. Niemetz, M. Preiner et al., “Btor2, BtorMC and Boolector 3.0,” in
International Conference on Computer Aided Verification, 2018.

[9] A. Biere, K. Heljanko, and S. Wieringa, “Aiger 1.9 and beyond,” 2011.
[10] C. Wolf. SymbiYosys. [Online]. Available: https://github.com/YosysHQ/

SymbiYosys
[11] J. Bachrach, H. Vo et al., “Chisel: Constructing Hardware in a Scala

Embedded Language,” in Design Automation Conference, 2012.
[12] K. Asanović, R. Avižienis et al., “The Rocket Chip Generator,” Tech.

Rep. UCB/EECS-2016-17, 2016.
[13] A. Izraelevitz, J. Koenig et al., “Reusability is FIRRTL Ground: Hard-

ware Construction Languages, Compiler Frameworks, and Transforma-
tions,” in International Conference on Computer-Aided Design, 2017.

[14] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
International conference on Tools and Algorithms for the Construction
and Analysis of Systems, 2008.

[15] C. Barrett, P. Fontaine, and C. Tinelli, “The SMT-LIB Standard: Version
2.6,” Tech. Rep., 2017, available at www.SMT-LIB.org.

[16] “IEEE Standard for SystemVerilog — Unified Hardware Design, Spec-
ification, and Verification Language,” IEEE Std. 1800, 2017.

[17] S. Karandikar, H. Mao et al., “FireSim: FPGA-Accelerated Cycle-Exact
Scale-Out System Simulation in the Public Cloud,” in ISCA, 2018.

4https://github.com/ucb-bar/chisel-testers2/tree/master/src/test/scala/
chiseltest/formal/examples

http://zipcpu.com/quiz/2019/11/16/quiz07.html
https://github.com/YosysHQ/SymbiYosys
https://github.com/YosysHQ/SymbiYosys
https://github.com/ucb-bar/chisel-testers2/tree/master/src/test/scala/chiseltest/formal/examples
https://github.com/ucb-bar/chisel-testers2/tree/master/src/test/scala/chiseltest/formal/examples

	Introduction
	The Chisel Hardware Construction Language
	Our Formal Verification Flow
	A Formal Backend for FIRRTL
	Reset Assumptions
	Simple Temporal Assertions
	Conclusion
	References

