
Automating GDS Generation in Magic

R. Timothy Edwards

SVP Analog and Platform

Efabless

San Jose, CA, USA

tim@efabless.com

Abstract—The Magic layout editor [1] has always been outside
of the mainstream in EDA tools in its concept that custom manual
layout should be simple and straightforward while remaining
essentially unconstrained. Magic does this by hiding various
implant layers, marker layers, and cut layers from the designer.
As a consequence, it has to generate all these layers automatically
during GDS format mask data generation. This is an extremely
difficult problem. I will present a variety of examples requiring
sophisticated decision-making on automated layout, strategies for
producing DRC-correct layout, and a discussion of recent en-
hancements to Magic’s GDS-generation engine and what further
development work is required.

Index Terms—EDA tools, open source, layout, VSLI

I. INTRODUCTION

Automatic generation of custom analog circuit layout is

a known difficult problem with a long history of research.

Success comes mostly from modifying the nature of the

problem, such that layout is arrayed, regular, and rules more

easily satisfied by design, such as with digital placement and

routing, or RAM compilers. Similar considerations for analog

layout such as FaSoC [2] are promising. But as long as there

is a need for full-custom analog layout, there is a benefit

in simplifying the design process as much as possible, and

automating layout generation in a way that removes the burden

of many detailed layout requirements and places that burden

on the software tools.

Many mask layers and design rules are the result of specific

foundry details and add complexity to the layout process

without any useful benefit. Such layers and rules force the

designer to understand the nature of the design rules, and to

run many iterations of layout drawing and DRC verification

to identify, understand, and resolve issues.

The Magic layout editor has always sought to simplify the

layout process for the designer, and makes use of many derived

layers and automatically generated output [3]. Foundry process

improvements outpaced software development for a long time,

but recent development work helps reverse that trend.

II. CUSTOM LAYOUT AUTOMATION

Magic handles mask data output automation by providing

a set of “recipes” in the technology file for a process that

describes how to generate each GDS layer using a series of

operators. Most of these operators are boolean logic operators

such as OR, AND, and AND-NOT, and obvious geometrical

operators like GROW and SHRINK. Unlike many EDA tools

which have an object-based database, the plane-tesselating

database magic makes some operations nearly trivial, such

as a GROW operation followed by a SHRINK operation to

bridge across narrow gaps in material. The tesselation method

is shown in Fig. 1 and covers all space in a single plane with

abutting rectangles, where areas not containing any material

are represented by a type “space” which is similarly divided

into simple abutting rectangles [4].

tile

TR

RT

BL

LB

(llx, lly)

. . .

. . .

. . .

.

. . .

. . .

. . .
tile TR(tile)

RT(tile)

LB(tile)

BL(tile)

Fig. 1. Plane tesselation database method in Magic. Top: The tile structure
with pointers to neighboring tiles. Bottom: A plane tesselated with material
and space tiles.

The GROW operation is implemented by increasing the size

of each tile of the specified type and painting into a new plane,

which then replaces the original. The SHRINK operation is

cleverly dependent on the full plane tesselation and can be

implemented simply by increasing the size of each tile not of

the specified type (including “space”), and painted into a new

plane, which then replaces the original.

A set of straightforward operators was implemented in the

earliest versions of magic. These are boolean operators and

the GROW and SHRINK operators just mentioned. Also, a

SQUARES operator was defined so that Magic could describe

contacts as “contact areas”, simplifying the creation of large-

area contacts by not rendering cuts or representing them in

the database, but generating them algorithmically on output.

This is one example of how Magic simplifies the process of

drawing layout, transferring the complexity to the mask data

generation.

The small set of original operations implemented in Magic

was completed by a context-dependent GROW operation

called BLOAT-OR. The complete set of original operators was

never sufficient even for early SCMOS processes, though, and

as process feature sizes decreased, numerous gaps in the ability

to automatically generate correct output mask data became

apparent.

III. HARD PROBLEMS

The primary failure of the set of original operators is

the handling of GROW followed by SHRINK for shapes

positioned catecorner from one another. The situation is shown

in Fig. 2, for a typical recipe to merge together implant areas

that violate minimum spacing. If the shapes overlap slightly

in the horizontal or vertical directions, then the recipe will

leave behind a thin sliver of material that violates the layer’s

minimum width rule. If the shapes don’t overlap, then nothing

is generated, and the spacing violation remains [5].

width violation

spacing
violation

Fig. 2. Catecorner geometry causing issues with auto-filling spacing vio-
lations. Top: Geometry overlapping in the vertical direction. Bottom: Non-
overlapping geometry.

Another difficult problem is the requirement for minimum

width or area of an implant. In most cases, an implant such

as N- or P-type doping just needs to surround an area of

diffusion with some minimum overlap. But if the diffusion

minimum width is small, then the diffusion width plus the

implant overlap distance in both directions may not add up to

the minimum width of the implant. In that case, the implant

needs additional overlap to make up the minimum width, and

no simple rule dictates in which direction (or both) the material

should be expanded to make up the difference.

IV. ENHANCEMENTS TO AUTOMATIC MASK DATA

GENERATION

This section describes additional mask-generation operators

that have been added to magic to resolve issues and gaps in

the original set of operators.

A. Contact cut arrays

A new algorithm for contact cut generation was added which

allows contact cuts to be non-rectangular. The algorithm first

splits the contact area into maximum-size rectangles, and fills

them with cut arrays, then picks up any remaining areas and

fills them with cut arrays if there is sufficient room. Where

maximum-size rectangles overlap, such as at the corner of

an L-bend, the area of overlap should be handled first, and

separately. This algorithm handles complex guard ring shapes,

placing contacts at corners and intersections, and centering the

remaining cuts along the ring, as demonstrated in Fig. 3.

Fig. 3. Complex guard ring shape and automatic placement of contact cuts.
Note the positioning of a contact at each intersection.

In addition to the new algorithm, a SLOTS operator has

been added that extends the SQAURES operator to both non-

square shapes, and shapes that may be placed at offsets instead

of a regular grid. The offset shapes are well suited to the

generation of fill shapes to meet layer density requirements.

B. CLOSE operator

A number of processes define a “minimum enclosed area”

for layers, and much like spacing rules for implants, the

preferred handling of violations is simply to add material

to plug up the area of the violation. The CLOSE operator

performs this task by identifying enclosed spaces of less than

the required minimum, which it does by the simple method of

summing the area of bounded “space” tiles. Having identified

such a bounded area, it converts the “space” tiles to the implant

layer type.

C. BRIDGE operator

The BRIDGE operator solves the catecorner problem in

a deterministic way. The method of BRIDGE is to identify

opposing tile corners, either corners of a specific layer type

with less than the layer’s minimum distance between them, or

corners of type “space” with less than the layer’s minimum

width between them. In both cases, the area between the

corners is filled with the material type in such a way as to

satisfy all width and spacing rules (see Figs. 4 and 5). While

the result is deterministic, it is not guaranteed to be the best

solution, nor is it guaranteed not to create DRC violations with

other material types.

search area
for opposing
corners failing
minimum
spacing

violation
found

added shape
must satisfy
minimum
width

Fig. 4. Illustration of bridging algorithm.

Fig. 5. Result of automatic bridging of catecorner shapes when generating
N+ implant around N-diffusion (implant area shown in white crosshatching).

D. BLOAT-ALL operator

The layer-dependent BLOAT-OR operator fails to capture

“interacting”-type rules in which, say, an implant must cover

an entire layer based on context, such as when an nwell must

be completely covered by a high-voltage implant if it contains

high-voltage transistors. The BLOAT-ALL operator adds this

functionality by growing a seed area (such as the area of a

high voltage transistor) to completely fill the area of extent of

another layer (such as an nwell).

E. BBOX operator

The BBOX operator is useful for certain rules that are

dependent on the boundary of a cell. The most common use of

this is the “bbox top” option, which restricts operation except

on the topmost level of hierarchy in the layout. It is particularly

useful for region identifiers at the top level, such as identifiers

that indicate the padframe area for ESD, or the chip core area

for latch-up rules.

F. GROW-MIN operator

The GROW-MIN operator is an attempted solution for the

problem of layers requiring minimum width. The algorithm is

to make a width check on every tile of the specified type, and

if the minimum width rule is not met, then the tile is increased

equally in both directions to make up the difference. This

method is too trivially simple to handle complex geometry; it

works well for transistor implants, where it only ever operates

on simple rectangles (see Fig. 6).

Fig. 6. The GROW-MIN operator works well on simple rectangles (right)
but not so well on complex shapes (left).

G. MASK-HINTS operator

Ultimately, if there are situations where automatic mask

generation fails to create DRC-clean layout, it must be possible

to manually override the automatic generation. The MASK-

HINTS operator method searches a cell for corresponding

properties (dictionary key-value pairs) defining rectangular

areas, and generates mask-data output corresponding to those

areas (see Fig. 7). The drawback of this method is that if the

cell layout is changed, then the property may become invalid

without any indication. Although typically used to add material

to a layout, the operator is always part of a recipe and can be

used with the AND-NOT operator to define areas to erase as

well as areas to add.

Fig. 7. A standard cell can lose mask information in Magic during GDS read.
On the right side, a mask hint property is used to restore the original mask
data, extending a contact implant layer (black outline) to reach both sides of
the standard cell abutment box (white outline).

V. AREAS NEEDING IMPROVEMENT

Magic will resolve issues like bridging across corners and

filling in gaps hierarchically from the top level of a layout

downward. Typically, material is added at the topmost cell

to resolve issues occurring between subcells. This method

can run into trouble if a subcell alone causes automatically-

generated layers to be generated differently than it would if the

subcell geometry were flattened and merged with the parent

cell. The GROW-MIN function can cause such issues because

a subcell can contain a small amount of material requiring a

surrounding automatically-generated implant to be expanded

to meet a minimum width rule; but that subcell may abut more

material in the parent cell, making the additional implant area

unnecessary.

Ultimately, most issues are the result of a lack of feedback

from the automatic mask data generation and the DRC engine

in Magic. The BRIDGE operator, for instance, gets the layer

width and spacing from the operator rule in the recipe; it

does not perform an actual DRC check. Magic does have

the ability to run DRC checks on the generated mask data

planes; the concern with running them on GDS output would

be the amount of time added to GDS layer generation. But

in lieu of checks during GDS generation, it is necessary

to ensure perfectly correct automatic layer generation. Since

some methods like BRIDGE and GROW-MIN may have

multiple possible solutions, some of which may result in DRC

errors, these checks are probably a necessity.

A measure of feedback would also be useful with the

SLOTS operator, to enhance its use for fill generation. The

existing implementation of the SLOTS operator can apply a

recipe with the hope of hitting the middle of a target range

of pattern density. A preferable solution would be to specify
a target density, and then have the SLOTS operation make

adjustments to reach that target density.

VI. CONCLUSIONS

Complex foundry processes can be an impediment to quick

and simple custom analog layout drawing. The open source

layout tool Magic has an approach that simplifies the drawing

process by automating much of the final mask generation

through the use of geometric “recipes” that define the output

layers. Process improvements have resulted in mask data

requirements that Magic’s original set of operators cannot

handle. An extended set of operators has been implemented to

meet these demands. In a few hard cases, improved algorithms

are needed to handle complex geometries. Ultimately, the

methods need to be combined with feedback from the inte-

grated DRC engine to ensure completely DRC-clean layout.

REFERENCES

[1] R. Timothy Edwards, “Magic VLSI Layout Editor,” http://www.
opencircuitdesign.com/magic

[2] T. Ajayi, et al., “An Open-source Framework for Autonomous SoC De-
sign with Analog Block Generation,” 2020 IFIP/IEEE 28th International
Conference on Very Large Scale Integration (VLSI-SoC), Salt Lake City,
USA, 2020

[3] J. Ousterhout, G. Hamachi, R. Mayo, W. Scott, and G. Taylor, “Magic:
A VLSI layout system,” Berkeley internal document, December 3, 1982.

[4] J. Ousterhout, “Corner stitching: A data structuring technique for VLSI
layout tools,” Berkeley internal document, December 13, 1982.

[5] R. Timothy Edwards, “The New Golden Age of Open Silicon,” Keynote
presentation, Workshop on Open Source EDA Technology (WOSET)
2019.

