
Andrew Dobis, Tjark Petersen
& Martin Schoeberl.

- Technical University of Denmark (DTU) -
Department of Applied Mathematics & Computer Science

TOWARDS FUNCTIONAL
COVERAGE-DRIVEN FUZZING

FOR CHISEL DESIGNS

�1

OUTLINE
➤ Motivation: Why use Functional Coverage as a metric?

➤ Background: Chisel & Fuzzing.

➤ Current solutions: Fuzzing for Chisel designs using software fuzzers and using
custom hardware fuzzing.

➤ Our solution: Use hardware-oriented coverage metric to drive fuzzing of a Chisel
Design.

➤ Initial Experiments: Using the fuzzer on the Leros accumulator ALU.

➤ Note: This solution is a work in progress and is currently still in development.
�2

MOTIVATION

�3

MOTIVATION: WHY USE FUNCTIONAL COVERAGE?

➤ Fuzzing is often associated to software testing.

➤ Current work has been done on Fuzzing for Digital Circuits,
but none using Functional Coverage as a driving metric.

➤ Goal:

➤ Explore the effects of using a metric that inherently
contains data about the Device Under Test (DUT).

➤ Evaluate its impact on the fuzzing efficiency.

�4

BACKGROUND

�5

BACKGROUND: CHISEL AND VERIFICATION
➤ Fuzzing: Automated input generation, driven by a given metric. This

means that depending on certain results, inputs are modified in order to
potentially find bugs in a quicker way than by testing every possible
value.

➤ Chisel: Hardware Construction Language (HCL) embedded in Scala.
Allows for high-level description of digital circuits using Object-Oriented
and Functional programming. Can generate Verilog as a final output.

➤ Functional Coverage: Hardware-centric coverage metric based around the
use of a Verification Plan(VP). Functional Coverage gives a qualitative
measure of the testing progress, telling us “which features of the DUT have
been tested?”.

�6

BACKGROUND: COVERAGE DRIVEN MUTATION-BASED FUZZING

➤ Automatic randomized input generation.

➤ Inputs are based on a set of valid initial inputs(seeds).

➤ Seeds are then mutated depending on the coverage result that
they generate. If the new inputs are “interesting”, they are
added to the seeds.

�7

Choose T from
interesting tests

No

Yes
New

Coverage?

Execute Test T'

loop

Yes Buggy
behavior?Report Bug

Mutate T into T'

Add T' to
interesting tests

CURRENT SOLUTIONS

�8

OVERVIEW OF THE CURRENT SOLUTIONS
➤ American Fuzzy Lop (AFL), 2013:

➤ Software coverage driven mutation-based fuzzer.

➤ uses edge coverage, a form of branch coverage.

➤ Their mutation techniques are used in our solution.

➤ RFuzz, 2020:

➤ Coverage-driven mutation based fuzzer for RTL designs.

➤ Leverages FPGAs to accelerate their solution.

➤ Employs intelligent techniques for fast memory initialization.

➤ Metric is also edge coverage.

�9

CURRENT SOLUTIONS: CONTINUATION

�10

➤ Fuzzing Hardware like Software, 2021:

➤ Translates DUT hardware into a software model.

➤ Uses existing software fuzzers for the fuzzing.

➤ All of these solutions rely on the same metric to guide fuzzing.

➤ Why not use a more complex metric?

➤ What will the impact on the performance look like?

OUR SOLUTION:
FUNCTIONAL COVERAGE TO DRIVE FUZZING

�11

OUR SOLUTION: OVERVIEW
➤ Functional Coverage metric being used is from ChiselVerify.

➤ Fuzzer functions in 5 phases:

➤ Interpret user-defined input files as bit-streams and load
them into the queue.

➤ Select next file from queue.

➤ Mutate file, first with deterministic then non-deterministic
mutation passes.

➤ Run test and retrieve coverage results. Outputs are
compared to a golden model to verify correctness.

➤ Compare results to previous ones, determine if test was
interesting and add it to the corpus. Repeat.

�12

OUR SOLUTION: DEFINING A TEST

➤ Main difference between Hw fuzzing and Sw fuzzing:

➤ Defining tests with timing.

➤ Input: Given a DUT with two 32b and one 64b input.
➤ input_size = 32 * 2 + 64 = 128 bits

➤ A single cycle of inputs is a bit-string of input_size
length.

➤ Each line in the input file is a cycle’s worth of inputs.

➤ ex: 0x00FF00’FFFFFF’0000FFFF00007FFF

�13

OUR SOLUTION: MUTATION ENGINE
➤ 1st attempt: Direct use of AFL’s engine using the JNI.

➤ Problem: Compilation time was too long.

➤ Need to add more dependencies(scala-jni).

➤ Solution: Reimplement subset of AFL’s engine in Scala.

➤ Deterministic mutation passes: modify certain bytes in the input
string deterministically.

➤ ex: Known Integers: replace bytes with “interesting bytes” (e.g.0xFF)

➤ Non-deterministic passes: use randomness to mutate the string.

➤ So far only deterministic passes have been implemented.

�14

INITIAL EXPERIMENTS

�15

INITIAL EXPERIMENTS: USE CASE
➤ Note: Our solution is a work in progress.

➤ Use case: Leros accumulator ALU:
➤ Input op<3b>, din<8b>; Output out<16b>
➤ Goal: Check for every operation using the most

interesting operands.

➤ What we need to do:

➤ 1) Create verification plan for functional coverage.

➤ 2) Create input seed file.

➤ 3) Run fuzzer.

�16

INITIAL EXPERIMENTS: SETUP FUZZER
➤ Verification plan:

➤ Create Input seed: 110 00100000 001 00011001 000 00000000

➤ Call fuzzer: Fuzzer(dut, cr, gm)(“output.txt”, "seed.bin")

�17

EVALUATION: IMPACT OF FUNCTIONAL COVERAGE ON EFFICIENCY

➤ Only initial tests have done so far and results aren’t
conclusive enough.

➤ Current work is being done on using the same fuzzer with
edge coverage in order to compare the results to functional
coverage.

➤ We expect functional coverage to lead to a converging fuzzer
in less iterations than with edge coverage. However, the
current efficiency of ChiselVerify’s FC may also lead to slower
fuzzing cycles.

�18

CONCLUSION

�19

CONCLUSION

➤ Work-in-progress paper is a sketch of how to support testing
and verification of digital designs described in Chisel with
fuzzing.

➤ Basis for more detailed performance evaluation when all
mutation techniques are added.

➤ Current work is being done on extending the fuzzing methods
for constrained random code generation.

�20

REFERENCES
➤ Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and

Koushik Sen. Rfuzz: Coverage-directed fuzz testing of rtl on fpgas. In 2018
IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 1–8, 2018.

➤ Michal Zalewski. American fuzzy lop. https://github.com/google/AFL.  

➤ Timothy Trippel, Kang G. Shin, Alex Chernyakhovsky, Garret Kelly,
Dominic Rizzo, and Matthew Hicks. Fuzzing hardware like software.  
CoRR, abs/2102.02308, 2021.

➤ Michal Zalewski. Binary fuzzing strategies: what works, what doesn’t.
https://lcamtuf.blogspot.com/2014/08/ binary- fuzzing- strategies- what-
works.html.

�21

GETTING STARTED USING CHISELVERIFY

➤ Current Project repository:

 https://github.com/chiselverify/chiselverify/

➤ Project Wiki (Good way to get started):

https://github.com/chiselverify/chiselverify/wiki/

➤ ChiselVerify is published on Maven. To use it, add following
line to your build.sbt:

�22

https://github.com/chiselverify/chiselverify
https://github.com/chiselverify/chiselverify/wiki

QUESTIONS?

�23

